从克兰菲尔德、密西西比和鄂尔多斯示范项目学习的田间CO2封存动态过程

Quanlin Zhou
{"title":"从克兰菲尔德、密西西比和鄂尔多斯示范项目学习的田间CO2封存动态过程","authors":"Quanlin Zhou","doi":"10.2139/ssrn.3821411","DOIUrl":null,"url":null,"abstract":"A number of field-demonstration and industrial-scale projects of geological carbon sequestration (GCS) have been conducted in the world over the last two decades. Hydrological-geophysical-geomechanical monitoring at many of these storage sites provide an opportunity for us to rethink the fundamental processes of CO2 storage in naturally heterogeneous formations. However, complete pictures of field phenomena and processes at most of the sites have not been achieved by integrating field monitoring data with site-characterization data. It often takes years to have a clear picture distilled for a field experiment. Without these pictures of what happened in the field, we could not take advantage of the field testing and monitoring to improve our understanding of the dynamic processes of CO2 storage through site-specific numerical modeling. In this talk, I will present (1) multiscale and multipath channeling of CO2 flow in the hierarchical fluvial reservoir at Cranfield, Mississippi (Zhou et al., 2020a) and (2) thermal fracturing and self-propping induced by liquid CO2 injection into the multilayered reservoirs at Ordos, China (Zhou et al., 2020b). <br><br>At Cranfield, Mississippi, CO2 was injected through injection well F1 into the Lower Tuscaloosa Formation at three step rates from 2.92 to 8.27 kg/s from December 1, 2009 to September 7, 2010. The total CO2 injection of 126,246 metric tonnes was followed by a shut-in from September 7 to 28, 2010, when the two monitoring wells (F2 and F3) were killed. I will present a consistent picture of dynamic channeling, invasion, spreading, and breakthrough (CISB) of supercritical CO2 in the hierarchical fluvial reservoir after ten years of integration and analysis of complementary field-monitoring and characterization data. The dynamic CISB with small-scale CO2-flow channels in the F1-F2-F3 cross section was imaged by daily electrical resistance tomography (ERT) and time-lapse crosswell seismic surveys. One, three, and four CO2-flow channels logged at F1, F2, and F3 respectively were dynamically connected with strong temporal variations in CO2 saturation during 221 days of drainage and 81 days of imbibition. Three intermediate-scale CO2-flow channels (with highest CO2 saturation) normal to the cross section were ERT-imaged during late-time drainage. A large-scale, sinuous fluvial CO2-flow channel was imaged by repeat surface seismic survey at the end of the imbibition. The fluvial sandstone channel sinuously bypasses the F1-F2-F3 cross section in a point bar, but the channel is connected to the cross section through an intermediate-scale sandstone channel, forming a complicated flow-channel network. The multiscale flow-channel network (in the fluvial-channel-point-bar system) revealed from the observed CISB enables us to consistently interpret the hydrological monitoring data of three tracer tests, each conducted during an injection-rate step, and pre-injection hydraulic-thermal-tracer tests. This interpretation of the CISB and flow-channel network can guide future modeling and data inversion to best understand the effects of natural heterogeneity on CO2 storage efficiency and residual trapping.<br><br>At Ordos, China, liquid CO2 at temperature from -15 to 5 ºC was injected into 21 injection layers of five low-permeability formations stacked over 763 m for nearly four years (from May 2011 to April 2015), leading to a maximum bottomhole-temperature reduction of 30 ºC. A unique step-rate injection test with shut-ins was performed annually, with flowmeter and pressure/temperature logging at the end of each injection-rate step. Field observations showed (1) enhanced injectivity with continuous reduction in wellhead and bottomhole injection pressure, (2) instantaneous formation breakdown signaled in high-frequency pressure and temperature transients, and (3) dynamic changes in the feed zone with the highest fractional CO2 flow from a depth of 1920 m to 1750 m and finally stabilizing at 1690 m. We interpret that the two feed-zone changes coincided with thermal fracturing of the second uppermost injection layer, with the pressure transient typical of formation breakdown and fracture propagation, at 13.75 days and of the uppermost injection layer at 386 days. The thermal fracturing was initiated when the total stress change (i.e., pressure increase plus dominant cooling-induced thermal stress) exceeded 94% of hydrostatic pressure. The initiated fractures propagated slowly during CO2 injection, with their thermal plumes retarded by fracture-matrix heat exchange, while they remained self-propping during shut-ins because of the cumulative cooling and contraction of the rock matrix. We attribute the enhanced injectivity to the dramatic system changes caused by thermal fracturing and the subsequent, slow system evolution caused by retarded fracture propagation. The beneficial impact of thermal fracturing is enhanced CO2 injectivity. The negative impacts include CO2 flow preferentially entering thin injection layers that fractured, and reduced storage efficiency in the planned thick storage system with five storage formations and 21 injection layers. <br><br>The CISB revealed at Cranfield shows the complex dynamic processes of CO2 storage in naturally heterogeneous reservoirs. The channelized CO2 flow through high-permeability sandstone channels is coupled with CO2 invasion, spreading, and breakthrough, leading to local CO2 storage and trapping in relatively low-permeability lenses of sandstone. The thermal fracturing imaged at Ordos calls for the attention of significant reservoir cooling and thermal stress near injection wells that are often ignored in the GCS community, in comparison with pressure buildup and caprock fracturing.<br>","PeriodicalId":243799,"journal":{"name":"EngRN: Energy Systems (Topic)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Processes of CO2 Storage in the Field Learned from Demonstration Projects at Cranfield, Mississippi and Ordos, China\",\"authors\":\"Quanlin Zhou\",\"doi\":\"10.2139/ssrn.3821411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of field-demonstration and industrial-scale projects of geological carbon sequestration (GCS) have been conducted in the world over the last two decades. Hydrological-geophysical-geomechanical monitoring at many of these storage sites provide an opportunity for us to rethink the fundamental processes of CO2 storage in naturally heterogeneous formations. However, complete pictures of field phenomena and processes at most of the sites have not been achieved by integrating field monitoring data with site-characterization data. It often takes years to have a clear picture distilled for a field experiment. Without these pictures of what happened in the field, we could not take advantage of the field testing and monitoring to improve our understanding of the dynamic processes of CO2 storage through site-specific numerical modeling. In this talk, I will present (1) multiscale and multipath channeling of CO2 flow in the hierarchical fluvial reservoir at Cranfield, Mississippi (Zhou et al., 2020a) and (2) thermal fracturing and self-propping induced by liquid CO2 injection into the multilayered reservoirs at Ordos, China (Zhou et al., 2020b). <br><br>At Cranfield, Mississippi, CO2 was injected through injection well F1 into the Lower Tuscaloosa Formation at three step rates from 2.92 to 8.27 kg/s from December 1, 2009 to September 7, 2010. The total CO2 injection of 126,246 metric tonnes was followed by a shut-in from September 7 to 28, 2010, when the two monitoring wells (F2 and F3) were killed. I will present a consistent picture of dynamic channeling, invasion, spreading, and breakthrough (CISB) of supercritical CO2 in the hierarchical fluvial reservoir after ten years of integration and analysis of complementary field-monitoring and characterization data. The dynamic CISB with small-scale CO2-flow channels in the F1-F2-F3 cross section was imaged by daily electrical resistance tomography (ERT) and time-lapse crosswell seismic surveys. One, three, and four CO2-flow channels logged at F1, F2, and F3 respectively were dynamically connected with strong temporal variations in CO2 saturation during 221 days of drainage and 81 days of imbibition. Three intermediate-scale CO2-flow channels (with highest CO2 saturation) normal to the cross section were ERT-imaged during late-time drainage. A large-scale, sinuous fluvial CO2-flow channel was imaged by repeat surface seismic survey at the end of the imbibition. The fluvial sandstone channel sinuously bypasses the F1-F2-F3 cross section in a point bar, but the channel is connected to the cross section through an intermediate-scale sandstone channel, forming a complicated flow-channel network. The multiscale flow-channel network (in the fluvial-channel-point-bar system) revealed from the observed CISB enables us to consistently interpret the hydrological monitoring data of three tracer tests, each conducted during an injection-rate step, and pre-injection hydraulic-thermal-tracer tests. This interpretation of the CISB and flow-channel network can guide future modeling and data inversion to best understand the effects of natural heterogeneity on CO2 storage efficiency and residual trapping.<br><br>At Ordos, China, liquid CO2 at temperature from -15 to 5 ºC was injected into 21 injection layers of five low-permeability formations stacked over 763 m for nearly four years (from May 2011 to April 2015), leading to a maximum bottomhole-temperature reduction of 30 ºC. A unique step-rate injection test with shut-ins was performed annually, with flowmeter and pressure/temperature logging at the end of each injection-rate step. Field observations showed (1) enhanced injectivity with continuous reduction in wellhead and bottomhole injection pressure, (2) instantaneous formation breakdown signaled in high-frequency pressure and temperature transients, and (3) dynamic changes in the feed zone with the highest fractional CO2 flow from a depth of 1920 m to 1750 m and finally stabilizing at 1690 m. We interpret that the two feed-zone changes coincided with thermal fracturing of the second uppermost injection layer, with the pressure transient typical of formation breakdown and fracture propagation, at 13.75 days and of the uppermost injection layer at 386 days. The thermal fracturing was initiated when the total stress change (i.e., pressure increase plus dominant cooling-induced thermal stress) exceeded 94% of hydrostatic pressure. The initiated fractures propagated slowly during CO2 injection, with their thermal plumes retarded by fracture-matrix heat exchange, while they remained self-propping during shut-ins because of the cumulative cooling and contraction of the rock matrix. We attribute the enhanced injectivity to the dramatic system changes caused by thermal fracturing and the subsequent, slow system evolution caused by retarded fracture propagation. The beneficial impact of thermal fracturing is enhanced CO2 injectivity. The negative impacts include CO2 flow preferentially entering thin injection layers that fractured, and reduced storage efficiency in the planned thick storage system with five storage formations and 21 injection layers. <br><br>The CISB revealed at Cranfield shows the complex dynamic processes of CO2 storage in naturally heterogeneous reservoirs. The channelized CO2 flow through high-permeability sandstone channels is coupled with CO2 invasion, spreading, and breakthrough, leading to local CO2 storage and trapping in relatively low-permeability lenses of sandstone. The thermal fracturing imaged at Ordos calls for the attention of significant reservoir cooling and thermal stress near injection wells that are often ignored in the GCS community, in comparison with pressure buildup and caprock fracturing.<br>\",\"PeriodicalId\":243799,\"journal\":{\"name\":\"EngRN: Energy Systems (Topic)\",\"volume\":\"182 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Energy Systems (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3821411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Energy Systems (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3821411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

负面影响包括CO2流动优先进入破裂的薄注入层,降低了计划中的5个储层和21个注入层的厚储层系统的储层效率。在克兰菲尔德发现的CISB显示了自然非均质储层中二氧化碳储存的复杂动态过程。在高渗透砂岩通道中,CO2的通道化流动伴随着CO2的侵入、扩散和突破,导致CO2在相对低渗透砂岩透镜体中局部封存和圈闭。鄂尔多斯的热压裂成像要求人们注意注水井附近明显的储层冷却和热应力,与压力积聚和盖层压裂相比,这些在GCS社区经常被忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Processes of CO2 Storage in the Field Learned from Demonstration Projects at Cranfield, Mississippi and Ordos, China
A number of field-demonstration and industrial-scale projects of geological carbon sequestration (GCS) have been conducted in the world over the last two decades. Hydrological-geophysical-geomechanical monitoring at many of these storage sites provide an opportunity for us to rethink the fundamental processes of CO2 storage in naturally heterogeneous formations. However, complete pictures of field phenomena and processes at most of the sites have not been achieved by integrating field monitoring data with site-characterization data. It often takes years to have a clear picture distilled for a field experiment. Without these pictures of what happened in the field, we could not take advantage of the field testing and monitoring to improve our understanding of the dynamic processes of CO2 storage through site-specific numerical modeling. In this talk, I will present (1) multiscale and multipath channeling of CO2 flow in the hierarchical fluvial reservoir at Cranfield, Mississippi (Zhou et al., 2020a) and (2) thermal fracturing and self-propping induced by liquid CO2 injection into the multilayered reservoirs at Ordos, China (Zhou et al., 2020b).

At Cranfield, Mississippi, CO2 was injected through injection well F1 into the Lower Tuscaloosa Formation at three step rates from 2.92 to 8.27 kg/s from December 1, 2009 to September 7, 2010. The total CO2 injection of 126,246 metric tonnes was followed by a shut-in from September 7 to 28, 2010, when the two monitoring wells (F2 and F3) were killed. I will present a consistent picture of dynamic channeling, invasion, spreading, and breakthrough (CISB) of supercritical CO2 in the hierarchical fluvial reservoir after ten years of integration and analysis of complementary field-monitoring and characterization data. The dynamic CISB with small-scale CO2-flow channels in the F1-F2-F3 cross section was imaged by daily electrical resistance tomography (ERT) and time-lapse crosswell seismic surveys. One, three, and four CO2-flow channels logged at F1, F2, and F3 respectively were dynamically connected with strong temporal variations in CO2 saturation during 221 days of drainage and 81 days of imbibition. Three intermediate-scale CO2-flow channels (with highest CO2 saturation) normal to the cross section were ERT-imaged during late-time drainage. A large-scale, sinuous fluvial CO2-flow channel was imaged by repeat surface seismic survey at the end of the imbibition. The fluvial sandstone channel sinuously bypasses the F1-F2-F3 cross section in a point bar, but the channel is connected to the cross section through an intermediate-scale sandstone channel, forming a complicated flow-channel network. The multiscale flow-channel network (in the fluvial-channel-point-bar system) revealed from the observed CISB enables us to consistently interpret the hydrological monitoring data of three tracer tests, each conducted during an injection-rate step, and pre-injection hydraulic-thermal-tracer tests. This interpretation of the CISB and flow-channel network can guide future modeling and data inversion to best understand the effects of natural heterogeneity on CO2 storage efficiency and residual trapping.

At Ordos, China, liquid CO2 at temperature from -15 to 5 ºC was injected into 21 injection layers of five low-permeability formations stacked over 763 m for nearly four years (from May 2011 to April 2015), leading to a maximum bottomhole-temperature reduction of 30 ºC. A unique step-rate injection test with shut-ins was performed annually, with flowmeter and pressure/temperature logging at the end of each injection-rate step. Field observations showed (1) enhanced injectivity with continuous reduction in wellhead and bottomhole injection pressure, (2) instantaneous formation breakdown signaled in high-frequency pressure and temperature transients, and (3) dynamic changes in the feed zone with the highest fractional CO2 flow from a depth of 1920 m to 1750 m and finally stabilizing at 1690 m. We interpret that the two feed-zone changes coincided with thermal fracturing of the second uppermost injection layer, with the pressure transient typical of formation breakdown and fracture propagation, at 13.75 days and of the uppermost injection layer at 386 days. The thermal fracturing was initiated when the total stress change (i.e., pressure increase plus dominant cooling-induced thermal stress) exceeded 94% of hydrostatic pressure. The initiated fractures propagated slowly during CO2 injection, with their thermal plumes retarded by fracture-matrix heat exchange, while they remained self-propping during shut-ins because of the cumulative cooling and contraction of the rock matrix. We attribute the enhanced injectivity to the dramatic system changes caused by thermal fracturing and the subsequent, slow system evolution caused by retarded fracture propagation. The beneficial impact of thermal fracturing is enhanced CO2 injectivity. The negative impacts include CO2 flow preferentially entering thin injection layers that fractured, and reduced storage efficiency in the planned thick storage system with five storage formations and 21 injection layers.

The CISB revealed at Cranfield shows the complex dynamic processes of CO2 storage in naturally heterogeneous reservoirs. The channelized CO2 flow through high-permeability sandstone channels is coupled with CO2 invasion, spreading, and breakthrough, leading to local CO2 storage and trapping in relatively low-permeability lenses of sandstone. The thermal fracturing imaged at Ordos calls for the attention of significant reservoir cooling and thermal stress near injection wells that are often ignored in the GCS community, in comparison with pressure buildup and caprock fracturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信