扩展卡尔曼滤波的步进电机自适应模糊逻辑位置控制

V. Bindu, A. Unnikrishnan, R. Gopikakumari
{"title":"扩展卡尔曼滤波的步进电机自适应模糊逻辑位置控制","authors":"V. Bindu, A. Unnikrishnan, R. Gopikakumari","doi":"10.1109/EPSCICON.2012.6175232","DOIUrl":null,"url":null,"abstract":"The present paper proposes an adaptive fuzzy logic control (AFLC) for the position control of a Stepper motor. The weights used for combining the fuzzy rules are also updated, using the least mean square algorithm. The paper also demonstrates a Kalman filter for the estimation of motor parameters like speed and flux vector position. The estimation is ensured to be robust even in the presence of arbitrary fluctuation of the input line currents. The modified Extended Kalman Filter (EKF) rejects the outliers in real-time, thereby eliminating the need for manual intervention in tuning the parameters of the EKF. The stability of the controller is checked by computing the Lyapunov exponent from the evolution of the state space of direct axis current, quadrature axis current, synchronous speed; and found to be stable at all the time. The simulation results show that the proposed control strategy operates robustly under modeling uncertainty, with a good dynamic performance.","PeriodicalId":143947,"journal":{"name":"2012 International Conference on Power, Signals, Controls and Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive fuzzy logic position control of a Stepper motor with Extended Kalman Filter\",\"authors\":\"V. Bindu, A. Unnikrishnan, R. Gopikakumari\",\"doi\":\"10.1109/EPSCICON.2012.6175232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper proposes an adaptive fuzzy logic control (AFLC) for the position control of a Stepper motor. The weights used for combining the fuzzy rules are also updated, using the least mean square algorithm. The paper also demonstrates a Kalman filter for the estimation of motor parameters like speed and flux vector position. The estimation is ensured to be robust even in the presence of arbitrary fluctuation of the input line currents. The modified Extended Kalman Filter (EKF) rejects the outliers in real-time, thereby eliminating the need for manual intervention in tuning the parameters of the EKF. The stability of the controller is checked by computing the Lyapunov exponent from the evolution of the state space of direct axis current, quadrature axis current, synchronous speed; and found to be stable at all the time. The simulation results show that the proposed control strategy operates robustly under modeling uncertainty, with a good dynamic performance.\",\"PeriodicalId\":143947,\"journal\":{\"name\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPSCICON.2012.6175232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Power, Signals, Controls and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPSCICON.2012.6175232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于步进电机位置控制的自适应模糊逻辑控制(AFLC)。使用最小均方算法更新了用于组合模糊规则的权重。本文还演示了一种卡尔曼滤波器,用于估计电机的速度和磁链矢量位置等参数。即使在输入线电流存在任意波动的情况下,也保证了估计的鲁棒性。改进的扩展卡尔曼滤波器(EKF)实时拒绝异常值,从而消除了人工干预调整EKF参数的需要。从直流轴电流、正交轴电流、同步速度的状态空间演化计算Lyapunov指数来检验控制器的稳定性;并且一直都是稳定的。仿真结果表明,该控制策略在建模不确定性下具有鲁棒性,具有良好的动态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive fuzzy logic position control of a Stepper motor with Extended Kalman Filter
The present paper proposes an adaptive fuzzy logic control (AFLC) for the position control of a Stepper motor. The weights used for combining the fuzzy rules are also updated, using the least mean square algorithm. The paper also demonstrates a Kalman filter for the estimation of motor parameters like speed and flux vector position. The estimation is ensured to be robust even in the presence of arbitrary fluctuation of the input line currents. The modified Extended Kalman Filter (EKF) rejects the outliers in real-time, thereby eliminating the need for manual intervention in tuning the parameters of the EKF. The stability of the controller is checked by computing the Lyapunov exponent from the evolution of the state space of direct axis current, quadrature axis current, synchronous speed; and found to be stable at all the time. The simulation results show that the proposed control strategy operates robustly under modeling uncertainty, with a good dynamic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信