{"title":"具有Nagumo和Krasnoselskii-Krein条件的模糊分数阶微分方程","authors":"T. Allahviranloo, S. Abbasbandy, S. Salahshour","doi":"10.2991/eusflat.2011.39","DOIUrl":null,"url":null,"abstract":"In this paper, we consider two new uniqueness results for fuzzy fractional differential equations (FFDEs) involving Riemann-Liouville generalized H-differentiability with the Nagumo-type condition and the Krasnoselskii-Krein-type condition. To this purpose, the equivalent integral forms of FFDEs are determined and then these are used to study the convergence of the Picard successive approximations.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Fuzzy fractional differential equations with Nagumo and Krasnoselskii-Krein condition\",\"authors\":\"T. Allahviranloo, S. Abbasbandy, S. Salahshour\",\"doi\":\"10.2991/eusflat.2011.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider two new uniqueness results for fuzzy fractional differential equations (FFDEs) involving Riemann-Liouville generalized H-differentiability with the Nagumo-type condition and the Krasnoselskii-Krein-type condition. To this purpose, the equivalent integral forms of FFDEs are determined and then these are used to study the convergence of the Picard successive approximations.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy fractional differential equations with Nagumo and Krasnoselskii-Krein condition
In this paper, we consider two new uniqueness results for fuzzy fractional differential equations (FFDEs) involving Riemann-Liouville generalized H-differentiability with the Nagumo-type condition and the Krasnoselskii-Krein-type condition. To this purpose, the equivalent integral forms of FFDEs are determined and then these are used to study the convergence of the Picard successive approximations.