具有Nagumo和Krasnoselskii-Krein条件的模糊分数阶微分方程

T. Allahviranloo, S. Abbasbandy, S. Salahshour
{"title":"具有Nagumo和Krasnoselskii-Krein条件的模糊分数阶微分方程","authors":"T. Allahviranloo, S. Abbasbandy, S. Salahshour","doi":"10.2991/eusflat.2011.39","DOIUrl":null,"url":null,"abstract":"In this paper, we consider two new uniqueness results for fuzzy fractional differential equations (FFDEs) involving Riemann-Liouville generalized H-differentiability with the Nagumo-type condition and the Krasnoselskii-Krein-type condition. To this purpose, the equivalent integral forms of FFDEs are determined and then these are used to study the convergence of the Picard successive approximations.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Fuzzy fractional differential equations with Nagumo and Krasnoselskii-Krein condition\",\"authors\":\"T. Allahviranloo, S. Abbasbandy, S. Salahshour\",\"doi\":\"10.2991/eusflat.2011.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider two new uniqueness results for fuzzy fractional differential equations (FFDEs) involving Riemann-Liouville generalized H-differentiability with the Nagumo-type condition and the Krasnoselskii-Krein-type condition. To this purpose, the equivalent integral forms of FFDEs are determined and then these are used to study the convergence of the Picard successive approximations.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文在nagumo型条件和krasnoselskii - krein型条件下,研究了涉及Riemann-Liouville广义h可微的模糊分数阶微分方程的两个新的唯一性结果。为此,确定了ffde的等价积分形式,并用这些形式研究了Picard连续逼近的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy fractional differential equations with Nagumo and Krasnoselskii-Krein condition
In this paper, we consider two new uniqueness results for fuzzy fractional differential equations (FFDEs) involving Riemann-Liouville generalized H-differentiability with the Nagumo-type condition and the Krasnoselskii-Krein-type condition. To this purpose, the equivalent integral forms of FFDEs are determined and then these are used to study the convergence of the Picard successive approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信