{"title":"用机器学习算法预测患者生存","authors":"M. B. Selek, S. S. Egeli, Y. Isler","doi":"10.54856/jiswa.202012126","DOIUrl":null,"url":null,"abstract":"In this study, the intensive care unit patient survival is predicted by machine learning algorithms according to the examinations performed in the first 24 hours. The data of intensive care patients collected from approximately two hundred hospitals over a period of one year were used. Algorithms are run in Python environment. Machine learning models were compared with the Cross-Validation method, and the random forest algorithm is used. The model made the prediction with 92,53% accuracy rate.","PeriodicalId":112412,"journal":{"name":"Journal of Intelligent Systems with Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patient Survival Prediction with Machine Learning Algorithms\",\"authors\":\"M. B. Selek, S. S. Egeli, Y. Isler\",\"doi\":\"10.54856/jiswa.202012126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the intensive care unit patient survival is predicted by machine learning algorithms according to the examinations performed in the first 24 hours. The data of intensive care patients collected from approximately two hundred hospitals over a period of one year were used. Algorithms are run in Python environment. Machine learning models were compared with the Cross-Validation method, and the random forest algorithm is used. The model made the prediction with 92,53% accuracy rate.\",\"PeriodicalId\":112412,\"journal\":{\"name\":\"Journal of Intelligent Systems with Applications\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54856/jiswa.202012126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54856/jiswa.202012126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Patient Survival Prediction with Machine Learning Algorithms
In this study, the intensive care unit patient survival is predicted by machine learning algorithms according to the examinations performed in the first 24 hours. The data of intensive care patients collected from approximately two hundred hospitals over a period of one year were used. Algorithms are run in Python environment. Machine learning models were compared with the Cross-Validation method, and the random forest algorithm is used. The model made the prediction with 92,53% accuracy rate.