减少反馈链路的分布式多小区MISO-OFDMA系统和容量最大化

Berna Özbek, D. L. Ruyet, M. Pischella
{"title":"减少反馈链路的分布式多小区MISO-OFDMA系统和容量最大化","authors":"Berna Özbek, D. L. Ruyet, M. Pischella","doi":"10.1109/ISWCS.2014.6933407","DOIUrl":null,"url":null,"abstract":"In this paper, we examine distributed and fair resource allocation for weighted sum multicell capacity maximization in multi-input single-output (MISO)-Orthogonal Frequency-Division Multiple Access (OFDMA) multicell systems with reduced feedback links. We apply zero forcing (ZF) precoding to reduce interference between the users in the same cell and then propose iterative distributed power allocation algorithm for the users with high signal-to-interference-plus-noise ratio (SINR) to reduce the interference between BSs. In order to perform distributed RA for MISO-OFDMA multicell systems, the channel state information (CSI) of all required links are fed back to all base stations. However, the feedback load increases with the number of users, base stations, subcarriers and antennas. Therefore, we propose a user selection algorithm at the receiver side to reduce the feedback load while providing CSI of the users with high SINR at the BSs. The performance results of the proposed algorithms are illustrated for multicell MISO-OFDMA systems in wireless channels.","PeriodicalId":431852,"journal":{"name":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sum capacity maximization in distributed multicell MISO-OFDMA systems with reduced feedback links\",\"authors\":\"Berna Özbek, D. L. Ruyet, M. Pischella\",\"doi\":\"10.1109/ISWCS.2014.6933407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine distributed and fair resource allocation for weighted sum multicell capacity maximization in multi-input single-output (MISO)-Orthogonal Frequency-Division Multiple Access (OFDMA) multicell systems with reduced feedback links. We apply zero forcing (ZF) precoding to reduce interference between the users in the same cell and then propose iterative distributed power allocation algorithm for the users with high signal-to-interference-plus-noise ratio (SINR) to reduce the interference between BSs. In order to perform distributed RA for MISO-OFDMA multicell systems, the channel state information (CSI) of all required links are fed back to all base stations. However, the feedback load increases with the number of users, base stations, subcarriers and antennas. Therefore, we propose a user selection algorithm at the receiver side to reduce the feedback load while providing CSI of the users with high SINR at the BSs. The performance results of the proposed algorithms are illustrated for multicell MISO-OFDMA systems in wireless channels.\",\"PeriodicalId\":431852,\"journal\":{\"name\":\"2014 11th International Symposium on Wireless Communications Systems (ISWCS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Symposium on Wireless Communications Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2014.6933407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2014.6933407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了多输入单输出(MISO)-正交频分多址(OFDMA)多小区系统中加权和多小区容量最大化的分配和公平资源分配问题。采用零强迫(zero forcing, ZF)预编码来减少同一小区用户间的干扰,然后针对信噪比高的用户提出迭代分布式功率分配算法来减少基站间的干扰。为了对MISO-OFDMA多小区系统进行分布式RA,将所有所需链路的信道状态信息(CSI)反馈给所有基站。但是,反馈负荷随着用户、基站、子载波和天线数量的增加而增加。因此,我们在接收端提出了一种用户选择算法,以减少反馈负载,同时在BSs处提供高信噪比的用户CSI。在无线信道中的多小区MISO-OFDMA系统中,给出了所提算法的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sum capacity maximization in distributed multicell MISO-OFDMA systems with reduced feedback links
In this paper, we examine distributed and fair resource allocation for weighted sum multicell capacity maximization in multi-input single-output (MISO)-Orthogonal Frequency-Division Multiple Access (OFDMA) multicell systems with reduced feedback links. We apply zero forcing (ZF) precoding to reduce interference between the users in the same cell and then propose iterative distributed power allocation algorithm for the users with high signal-to-interference-plus-noise ratio (SINR) to reduce the interference between BSs. In order to perform distributed RA for MISO-OFDMA multicell systems, the channel state information (CSI) of all required links are fed back to all base stations. However, the feedback load increases with the number of users, base stations, subcarriers and antennas. Therefore, we propose a user selection algorithm at the receiver side to reduce the feedback load while providing CSI of the users with high SINR at the BSs. The performance results of the proposed algorithms are illustrated for multicell MISO-OFDMA systems in wireless channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信