基于小波的支持向量机的面部表情识别

Jhilmil Mathur, U. S. Pandey
{"title":"基于小波的支持向量机的面部表情识别","authors":"Jhilmil Mathur, U. S. Pandey","doi":"10.1109/RDCAPE.2017.8358281","DOIUrl":null,"url":null,"abstract":"The present work is an attempt to unravel the classical problem of Facial Expression Recognition (FER). In realization of the FER system the emphasis is given on preprocessing technique. The paper proposes the Gaussian mask for illumination correction pre-processing which when subtracted from histogram equalized illumination plane shows improvement in the image and the FER results. The present work shows the use of wavelet in feature extraction and Support Vector Machine (SVM) as a classifier will result in accurate and robust FER system. It proposes the quantization and encoding technique of the wavelet decomposed features that result in greater FER accuracy.","PeriodicalId":442235,"journal":{"name":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Facial expression recognition using wavelet based Support Vector Machine\",\"authors\":\"Jhilmil Mathur, U. S. Pandey\",\"doi\":\"10.1109/RDCAPE.2017.8358281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work is an attempt to unravel the classical problem of Facial Expression Recognition (FER). In realization of the FER system the emphasis is given on preprocessing technique. The paper proposes the Gaussian mask for illumination correction pre-processing which when subtracted from histogram equalized illumination plane shows improvement in the image and the FER results. The present work shows the use of wavelet in feature extraction and Support Vector Machine (SVM) as a classifier will result in accurate and robust FER system. It proposes the quantization and encoding technique of the wavelet decomposed features that result in greater FER accuracy.\",\"PeriodicalId\":442235,\"journal\":{\"name\":\"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)\",\"volume\":\"289 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RDCAPE.2017.8358281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2017.8358281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文试图解决面部表情识别(FER)的经典问题。在FER系统的实现中,重点介绍了预处理技术。本文提出了高斯掩模进行照度校正预处理,从直方图均衡照度平面中减去高斯掩模后,图像和FER结果都得到了改善。本文的工作表明,将小波用于特征提取和支持向量机(SVM)作为分类器可以得到准确和鲁棒的FER系统。提出了小波分解特征的量化和编码技术,提高了小波变换的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial expression recognition using wavelet based Support Vector Machine
The present work is an attempt to unravel the classical problem of Facial Expression Recognition (FER). In realization of the FER system the emphasis is given on preprocessing technique. The paper proposes the Gaussian mask for illumination correction pre-processing which when subtracted from histogram equalized illumination plane shows improvement in the image and the FER results. The present work shows the use of wavelet in feature extraction and Support Vector Machine (SVM) as a classifier will result in accurate and robust FER system. It proposes the quantization and encoding technique of the wavelet decomposed features that result in greater FER accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信