离散动态机器人模型分析

Tsu-Tian Lee, Yuh-Feng Tsay
{"title":"离散动态机器人模型分析","authors":"Tsu-Tian Lee, Yuh-Feng Tsay","doi":"10.1109/JRA.1987.1087135","DOIUrl":null,"url":null,"abstract":"The discrete shift-transformation matrix of general orthogonal polynomials is introduced. The discrete shift-transformation matrix is employed to transform the difference equations, which describe the discrete dynamic robot model, into algebraic equations. Several lemmas are introduced which, together with the discrete shift-transformation matrix, solve for the joint positions and velocities of discrete dynamic robot models via discrete orthogonal polynomials approximations. The initial numerical experiment with a cylindrical coordinate robot shows the feasibility and applicability of discrete orthogonal polynomials approximations.","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of discrete dynamic robot models\",\"authors\":\"Tsu-Tian Lee, Yuh-Feng Tsay\",\"doi\":\"10.1109/JRA.1987.1087135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discrete shift-transformation matrix of general orthogonal polynomials is introduced. The discrete shift-transformation matrix is employed to transform the difference equations, which describe the discrete dynamic robot model, into algebraic equations. Several lemmas are introduced which, together with the discrete shift-transformation matrix, solve for the joint positions and velocities of discrete dynamic robot models via discrete orthogonal polynomials approximations. The initial numerical experiment with a cylindrical coordinate robot shows the feasibility and applicability of discrete orthogonal polynomials approximations.\",\"PeriodicalId\":370047,\"journal\":{\"name\":\"IEEE J. Robotics Autom.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JRA.1987.1087135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JRA.1987.1087135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了一般正交多项式的离散位移变换矩阵。采用离散位移变换矩阵将描述离散动态机器人模型的差分方程转化为代数方程。引入了几个引理,结合离散位移变换矩阵,通过离散正交多项式逼近求解离散动态机器人模型的关节位置和速度。通过圆柱坐标机器人的初步数值实验,验证了离散正交多项式逼近的可行性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of discrete dynamic robot models
The discrete shift-transformation matrix of general orthogonal polynomials is introduced. The discrete shift-transformation matrix is employed to transform the difference equations, which describe the discrete dynamic robot model, into algebraic equations. Several lemmas are introduced which, together with the discrete shift-transformation matrix, solve for the joint positions and velocities of discrete dynamic robot models via discrete orthogonal polynomials approximations. The initial numerical experiment with a cylindrical coordinate robot shows the feasibility and applicability of discrete orthogonal polynomials approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信