随机相关-机会规划的混合智能算法

Xiaoli Ning, Zeng Jianchao
{"title":"随机相关-机会规划的混合智能算法","authors":"Xiaoli Ning, Zeng Jianchao","doi":"10.1109/WKDD.2008.51","DOIUrl":null,"url":null,"abstract":"The stochastic dependent-chance programming belongs to a class of stochastic programming problems, which has wide application backgrounds, in order to search an algorithm which can more effectively solve this problem, in the paper, stochastic simulation is used to produce training samples for BP neural networks, and a hybrid intelligent algorithm for stochastic dependent-chance programming combined PSO algorithm with BP neural networks for approximation of the chance function is presented. Finally, the simulation results of two examples are given to show the correctness and effectiveness of the algorithm.","PeriodicalId":101656,"journal":{"name":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Hybrid Intelligent Algorithm for Stochastic Dependent-Chance Programming\",\"authors\":\"Xiaoli Ning, Zeng Jianchao\",\"doi\":\"10.1109/WKDD.2008.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stochastic dependent-chance programming belongs to a class of stochastic programming problems, which has wide application backgrounds, in order to search an algorithm which can more effectively solve this problem, in the paper, stochastic simulation is used to produce training samples for BP neural networks, and a hybrid intelligent algorithm for stochastic dependent-chance programming combined PSO algorithm with BP neural networks for approximation of the chance function is presented. Finally, the simulation results of two examples are given to show the correctness and effectiveness of the algorithm.\",\"PeriodicalId\":101656,\"journal\":{\"name\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2008.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2008.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随机依赖机会规划是一类具有广泛应用背景的随机规划问题,为了寻找一种能更有效地解决这类问题的算法,本文采用随机模拟的方法为BP神经网络生成训练样本,提出了一种结合粒子群算法和BP神经网络的混合智能随机依赖机会规划算法,用于机会函数的逼近。最后给出了两个算例的仿真结果,验证了算法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Intelligent Algorithm for Stochastic Dependent-Chance Programming
The stochastic dependent-chance programming belongs to a class of stochastic programming problems, which has wide application backgrounds, in order to search an algorithm which can more effectively solve this problem, in the paper, stochastic simulation is used to produce training samples for BP neural networks, and a hybrid intelligent algorithm for stochastic dependent-chance programming combined PSO algorithm with BP neural networks for approximation of the chance function is presented. Finally, the simulation results of two examples are given to show the correctness and effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信