利用数据挖掘技术预测糖尿病患者的低血糖

Khouloud Safi Eljil, G. Qadah, Michel Pasquier
{"title":"利用数据挖掘技术预测糖尿病患者的低血糖","authors":"Khouloud Safi Eljil, G. Qadah, Michel Pasquier","doi":"10.1109/INNOVATIONS.2013.6544406","DOIUrl":null,"url":null,"abstract":"The proper control of blood glucose levels in diabetic patients reduces serious complications. Yet tighter glycemic control increases the risk of developing hypoglycemia, a sudden drop in patients' blood glucose levels that causes coma and possibly death if proper action is not taken immediately. In this paper, we propose a hypoglycemia prediction model, using recent history of subcutaneous glucose measurements collected via Continuous Glucose Monitoring (CGM) sensors. The model is able to predict hypoglycemia events within a prediction horizon of thirty minutes accurately (sensitivity= 86.47%, specificity= 96.22, accuracy= 95.97%) using only the last two glucose measurements and the difference between them. More remarkably, this study shows the ability to develop a generalized prediction model suitable for predicting hypoglycemia events for the group of patients participating in the study.","PeriodicalId":438270,"journal":{"name":"2013 9th International Conference on Innovations in Information Technology (IIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Predicting hypoglycemia in diabetic patients using data mining techniques\",\"authors\":\"Khouloud Safi Eljil, G. Qadah, Michel Pasquier\",\"doi\":\"10.1109/INNOVATIONS.2013.6544406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proper control of blood glucose levels in diabetic patients reduces serious complications. Yet tighter glycemic control increases the risk of developing hypoglycemia, a sudden drop in patients' blood glucose levels that causes coma and possibly death if proper action is not taken immediately. In this paper, we propose a hypoglycemia prediction model, using recent history of subcutaneous glucose measurements collected via Continuous Glucose Monitoring (CGM) sensors. The model is able to predict hypoglycemia events within a prediction horizon of thirty minutes accurately (sensitivity= 86.47%, specificity= 96.22, accuracy= 95.97%) using only the last two glucose measurements and the difference between them. More remarkably, this study shows the ability to develop a generalized prediction model suitable for predicting hypoglycemia events for the group of patients participating in the study.\",\"PeriodicalId\":438270,\"journal\":{\"name\":\"2013 9th International Conference on Innovations in Information Technology (IIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Conference on Innovations in Information Technology (IIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INNOVATIONS.2013.6544406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Innovations in Information Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INNOVATIONS.2013.6544406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

适当控制糖尿病患者的血糖水平可以减少严重的并发症。然而,更严格的血糖控制会增加发生低血糖症的风险。低血糖症是指患者血糖水平突然下降,如果不立即采取适当措施,会导致昏迷,甚至可能死亡。在本文中,我们提出了一种低血糖预测模型,该模型使用了通过连续血糖监测(CGM)传感器收集的皮下葡萄糖测量的近期历史。该模型仅使用最后两次血糖测量值及其差值,即可准确预测30分钟内的低血糖事件(灵敏度= 86.47%,特异性= 96.22,准确度= 95.97%)。更值得注意的是,本研究显示了开发一种适用于预测参与研究的患者组低血糖事件的广义预测模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting hypoglycemia in diabetic patients using data mining techniques
The proper control of blood glucose levels in diabetic patients reduces serious complications. Yet tighter glycemic control increases the risk of developing hypoglycemia, a sudden drop in patients' blood glucose levels that causes coma and possibly death if proper action is not taken immediately. In this paper, we propose a hypoglycemia prediction model, using recent history of subcutaneous glucose measurements collected via Continuous Glucose Monitoring (CGM) sensors. The model is able to predict hypoglycemia events within a prediction horizon of thirty minutes accurately (sensitivity= 86.47%, specificity= 96.22, accuracy= 95.97%) using only the last two glucose measurements and the difference between them. More remarkably, this study shows the ability to develop a generalized prediction model suitable for predicting hypoglycemia events for the group of patients participating in the study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信