{"title":"非牛顿流变性对分离和再附着流动中生物流体传质的影响","authors":"K. Hammad","doi":"10.1115/IMECE2018-86809","DOIUrl":null,"url":null,"abstract":"Influence of the rheological model selection on the flow and mass transfer behavior of human blood in a separated and reattached flow region is investigated. Newtonian and non-Newtonian hemorheological models that account for the yield stress and shear-thinning characteristics of blood are used. The conservation of mass, momentum, and species equations as well as the Herschel-Bulkley constitutive equation are solved numerically using a finite-difference scheme. A parametric study is performed to reveal the impact of flow restriction and rheological modelling on blood-borne oxygen exchange with the confining walls. The wall mass transfer rates within the separated and reattached regions display a strong dependency on the used hemorheological model. Newtonian and non-Newtonian models result in a peak wall mass transfer rate within the recirculation region. However, non-Newtonian models that account for the yield stress and shear-thinning effects predict a substantial, highly localized, drop in the wall mass transfer rates of oxygen, at the reattachment point.","PeriodicalId":332737,"journal":{"name":"Volume 3: Biomedical and Biotechnology Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Non-Newtonian Rheology on Mass Transfer From a Biofluid in Separated and Reattached Flows\",\"authors\":\"K. Hammad\",\"doi\":\"10.1115/IMECE2018-86809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influence of the rheological model selection on the flow and mass transfer behavior of human blood in a separated and reattached flow region is investigated. Newtonian and non-Newtonian hemorheological models that account for the yield stress and shear-thinning characteristics of blood are used. The conservation of mass, momentum, and species equations as well as the Herschel-Bulkley constitutive equation are solved numerically using a finite-difference scheme. A parametric study is performed to reveal the impact of flow restriction and rheological modelling on blood-borne oxygen exchange with the confining walls. The wall mass transfer rates within the separated and reattached regions display a strong dependency on the used hemorheological model. Newtonian and non-Newtonian models result in a peak wall mass transfer rate within the recirculation region. However, non-Newtonian models that account for the yield stress and shear-thinning effects predict a substantial, highly localized, drop in the wall mass transfer rates of oxygen, at the reattachment point.\",\"PeriodicalId\":332737,\"journal\":{\"name\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Biomedical and Biotechnology Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Non-Newtonian Rheology on Mass Transfer From a Biofluid in Separated and Reattached Flows
Influence of the rheological model selection on the flow and mass transfer behavior of human blood in a separated and reattached flow region is investigated. Newtonian and non-Newtonian hemorheological models that account for the yield stress and shear-thinning characteristics of blood are used. The conservation of mass, momentum, and species equations as well as the Herschel-Bulkley constitutive equation are solved numerically using a finite-difference scheme. A parametric study is performed to reveal the impact of flow restriction and rheological modelling on blood-borne oxygen exchange with the confining walls. The wall mass transfer rates within the separated and reattached regions display a strong dependency on the used hemorheological model. Newtonian and non-Newtonian models result in a peak wall mass transfer rate within the recirculation region. However, non-Newtonian models that account for the yield stress and shear-thinning effects predict a substantial, highly localized, drop in the wall mass transfer rates of oxygen, at the reattachment point.