牛津路边界数据集

Tarlan Suleymanov, Matthew Gadd, D. Martini, P. Newman
{"title":"牛津路边界数据集","authors":"Tarlan Suleymanov, Matthew Gadd, D. Martini, P. Newman","doi":"10.1109/ivworkshops54471.2021.9669250","DOIUrl":null,"url":null,"abstract":"In this paper we present The Oxford Road Boundaries Dataset, designed for training and testing machine-learning-based road-boundary detection and inference approaches. We have hand-annotated two of the 10 km-long forays from the Oxford Robotcar Dataset and generated from other forays several thousand further examples with semi-annotated road-boundary masks. To boost the number of training samples in this way, we used a vision-based localiser to project labels from the annotated datasets to other traversals at different times and weather conditions. As a result, we release 62 605 labelled samples, of which 47 639 samples are curated. Each of these samples contain both raw and classified masks for left and right lenses. Our data contains images from a diverse set of scenarios such as straight roads, parked cars, junctions, etc. Files for download and tools for manipulating the labelled data are available at: oxford-robotics-institute.github.io/road-boundaries-dataset","PeriodicalId":256905,"journal":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Oxford Road Boundaries Dataset\",\"authors\":\"Tarlan Suleymanov, Matthew Gadd, D. Martini, P. Newman\",\"doi\":\"10.1109/ivworkshops54471.2021.9669250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present The Oxford Road Boundaries Dataset, designed for training and testing machine-learning-based road-boundary detection and inference approaches. We have hand-annotated two of the 10 km-long forays from the Oxford Robotcar Dataset and generated from other forays several thousand further examples with semi-annotated road-boundary masks. To boost the number of training samples in this way, we used a vision-based localiser to project labels from the annotated datasets to other traversals at different times and weather conditions. As a result, we release 62 605 labelled samples, of which 47 639 samples are curated. Each of these samples contain both raw and classified masks for left and right lenses. Our data contains images from a diverse set of scenarios such as straight roads, parked cars, junctions, etc. Files for download and tools for manipulating the labelled data are available at: oxford-robotics-institute.github.io/road-boundaries-dataset\",\"PeriodicalId\":256905,\"journal\":{\"name\":\"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ivworkshops54471.2021.9669250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivworkshops54471.2021.9669250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了牛津道路边界数据集,用于训练和测试基于机器学习的道路边界检测和推理方法。我们手工标注了牛津机器人汽车数据集中10公里长的两次尝试,并从其他尝试中生成了数千个带有半标注道路边界掩码的进一步示例。为了以这种方式增加训练样本的数量,我们使用基于视觉的定位器在不同的时间和天气条件下将标注数据集的标签投影到其他遍历。因此,我们发布了62 605个标签样本,其中47 639个样本是策划的。这些样本中的每一个都包含左侧和右侧镜头的原始和分类掩模。我们的数据包含来自不同场景的图像,如笔直的道路、停放的汽车、交叉路口等。用于操作标记数据的下载文件和工具可在以下网站获得:oxford-robotics-institute.github.io/ road-borders-dataset
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Oxford Road Boundaries Dataset
In this paper we present The Oxford Road Boundaries Dataset, designed for training and testing machine-learning-based road-boundary detection and inference approaches. We have hand-annotated two of the 10 km-long forays from the Oxford Robotcar Dataset and generated from other forays several thousand further examples with semi-annotated road-boundary masks. To boost the number of training samples in this way, we used a vision-based localiser to project labels from the annotated datasets to other traversals at different times and weather conditions. As a result, we release 62 605 labelled samples, of which 47 639 samples are curated. Each of these samples contain both raw and classified masks for left and right lenses. Our data contains images from a diverse set of scenarios such as straight roads, parked cars, junctions, etc. Files for download and tools for manipulating the labelled data are available at: oxford-robotics-institute.github.io/road-boundaries-dataset
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信