一种超低功耗工艺-温度补偿环形振荡器

Hazem H. Hammam, Khaled M. Hassan, S. Ibrahim
{"title":"一种超低功耗工艺-温度补偿环形振荡器","authors":"Hazem H. Hammam, Khaled M. Hassan, S. Ibrahim","doi":"10.1109/iceee55327.2022.9772521","DOIUrl":null,"url":null,"abstract":"The need for low-power and high-precision clock is desirable for systems that target high power efficiency. In most designs, a complex compensation technique is required to generate a Process-Voltage-Temperature (PVT) independent clock which has a high-power consumption power and occupies a large silicon area. This paper presents the design of a 3-stage current-starved ring oscillator that compensates for process and temperature variations. The proposed ring oscillator achieves up to 90% reduction in the frequency variation from its center frequency across process and temperature variations compared to the conventional current-starved ring oscillator. The proposed design is implemented in a standard 130-nm CMOS process. The power for the proposed circuitry is 346 nW and occupies an area of 315 µm2.","PeriodicalId":375340,"journal":{"name":"2022 9th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ultra-Low-Power Process-and- Temperature Compensated Ring Oscillator\",\"authors\":\"Hazem H. Hammam, Khaled M. Hassan, S. Ibrahim\",\"doi\":\"10.1109/iceee55327.2022.9772521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for low-power and high-precision clock is desirable for systems that target high power efficiency. In most designs, a complex compensation technique is required to generate a Process-Voltage-Temperature (PVT) independent clock which has a high-power consumption power and occupies a large silicon area. This paper presents the design of a 3-stage current-starved ring oscillator that compensates for process and temperature variations. The proposed ring oscillator achieves up to 90% reduction in the frequency variation from its center frequency across process and temperature variations compared to the conventional current-starved ring oscillator. The proposed design is implemented in a standard 130-nm CMOS process. The power for the proposed circuitry is 346 nW and occupies an area of 315 µm2.\",\"PeriodicalId\":375340,\"journal\":{\"name\":\"2022 9th International Conference on Electrical and Electronics Engineering (ICEEE)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th International Conference on Electrical and Electronics Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iceee55327.2022.9772521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iceee55327.2022.9772521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低功耗和高精度时钟的需求是理想的系统,目标是高功率效率。在大多数设计中,需要采用复杂的补偿技术来产生与工艺电压温度(PVT)无关的时钟,该时钟具有高功耗且占用较大的硅面积。本文介绍了一种补偿工艺和温度变化的三级缺流环形振荡器的设计。与传统的电流匮乏型环形振荡器相比,所提出的环形振荡器在其中心频率和温度变化之间的频率变化减少了90%。提出的设计是在标准的130纳米CMOS工艺中实现的。该电路的功率为346 nW,占地面积为315µm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ultra-Low-Power Process-and- Temperature Compensated Ring Oscillator
The need for low-power and high-precision clock is desirable for systems that target high power efficiency. In most designs, a complex compensation technique is required to generate a Process-Voltage-Temperature (PVT) independent clock which has a high-power consumption power and occupies a large silicon area. This paper presents the design of a 3-stage current-starved ring oscillator that compensates for process and temperature variations. The proposed ring oscillator achieves up to 90% reduction in the frequency variation from its center frequency across process and temperature variations compared to the conventional current-starved ring oscillator. The proposed design is implemented in a standard 130-nm CMOS process. The power for the proposed circuitry is 346 nW and occupies an area of 315 µm2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信