利用人脸的对称特征对人脸图像进行分类

Caikou Chen, Yong Xu
{"title":"利用人脸的对称特征对人脸图像进行分类","authors":"Caikou Chen, Yong Xu","doi":"10.1109/ICOIP.2010.334","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to exploit the symmetrical characteristic of the face to represent and classify face images. The proposed method first partitions each face image into two halves, i.e. the left part and the right part of the face image. The method then uses a linear combination of the left parts of all the training samples to represent the left part of the testing sample. Also, this method employs a linear combination of the right parts of all the training samples to represent the right part of the testing sample. Finally, the method combines the two representation result to classify the testing sample. The conducted face recognition experiments show that the proposed method can produce a lower error rate than the comparison method.","PeriodicalId":333542,"journal":{"name":"2010 International Conference on Optoelectronics and Image Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting the Symmetrical Characteristic of Faces to Classify Face Images\",\"authors\":\"Caikou Chen, Yong Xu\",\"doi\":\"10.1109/ICOIP.2010.334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to exploit the symmetrical characteristic of the face to represent and classify face images. The proposed method first partitions each face image into two halves, i.e. the left part and the right part of the face image. The method then uses a linear combination of the left parts of all the training samples to represent the left part of the testing sample. Also, this method employs a linear combination of the right parts of all the training samples to represent the right part of the testing sample. Finally, the method combines the two representation result to classify the testing sample. The conducted face recognition experiments show that the proposed method can produce a lower error rate than the comparison method.\",\"PeriodicalId\":333542,\"journal\":{\"name\":\"2010 International Conference on Optoelectronics and Image Processing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Optoelectronics and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIP.2010.334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Optoelectronics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIP.2010.334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出利用人脸的对称特征对人脸图像进行表示和分类。该方法首先将每张人脸图像分成两部分,即人脸图像的左右部分。然后,该方法使用所有训练样本的左侧部分的线性组合来表示测试样本的左侧部分。此外,该方法采用所有训练样本的正确部分的线性组合来表示测试样本的正确部分。最后,该方法结合两种表示结果对测试样本进行分类。人脸识别实验表明,该方法的误差率低于对比方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting the Symmetrical Characteristic of Faces to Classify Face Images
In this paper, we propose to exploit the symmetrical characteristic of the face to represent and classify face images. The proposed method first partitions each face image into two halves, i.e. the left part and the right part of the face image. The method then uses a linear combination of the left parts of all the training samples to represent the left part of the testing sample. Also, this method employs a linear combination of the right parts of all the training samples to represent the right part of the testing sample. Finally, the method combines the two representation result to classify the testing sample. The conducted face recognition experiments show that the proposed method can produce a lower error rate than the comparison method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信