{"title":"多响应面数学规划中最优解的渐近正态性","authors":"J. A. Díaz-García, F. Caro-Lopera","doi":"10.51936/bbsc6124","DOIUrl":null,"url":null,"abstract":"An explicit form for the perturbation effect on the matrix of regression coefficients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.","PeriodicalId":242585,"journal":{"name":"Advances in Methodology and Statistics","volume":"707 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic normality of the optimal solution in multiresponse surface mathematical programming\",\"authors\":\"J. A. Díaz-García, F. Caro-Lopera\",\"doi\":\"10.51936/bbsc6124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An explicit form for the perturbation effect on the matrix of regression coefficients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.\",\"PeriodicalId\":242585,\"journal\":{\"name\":\"Advances in Methodology and Statistics\",\"volume\":\"707 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methodology and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51936/bbsc6124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methodology and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51936/bbsc6124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic normality of the optimal solution in multiresponse surface mathematical programming
An explicit form for the perturbation effect on the matrix of regression coefficients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.