有限元多层条形光栅的平面波衍射

M. Kaliberda
{"title":"有限元多层条形光栅的平面波衍射","authors":"M. Kaliberda","doi":"10.1109/MSMW.2007.4294643","DOIUrl":null,"url":null,"abstract":"This paper deals with plane wave diffraction problem where electromagnetic fields have continuous space spectrum. The operator method is good adjusted to such problems and allows obtaining results in wide ranges of parameters variations. The main moment of operator method using is the solution of mentioned above key problem - the interaction of plane wave spectrum with unity layer boundary problem. This problem has been solved with the discrete singularities method. The spectral function of scattered field in any point can be obtained to any desired degree of precision.","PeriodicalId":235293,"journal":{"name":"2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plane Wave Diffraction by Finite-Element Mlti-Layered Strip Grating\",\"authors\":\"M. Kaliberda\",\"doi\":\"10.1109/MSMW.2007.4294643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with plane wave diffraction problem where electromagnetic fields have continuous space spectrum. The operator method is good adjusted to such problems and allows obtaining results in wide ranges of parameters variations. The main moment of operator method using is the solution of mentioned above key problem - the interaction of plane wave spectrum with unity layer boundary problem. This problem has been solved with the discrete singularities method. The spectral function of scattered field in any point can be obtained to any desired degree of precision.\",\"PeriodicalId\":235293,\"journal\":{\"name\":\"2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMW.2007.4294643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2007.4294643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有连续空间谱的电磁场的平面波衍射问题。算子法很好地适应了这类问题,并允许在很宽的参数变化范围内得到结果。使用算子法的主要时刻是解决上述关键问题——平面波谱与统一层边界问题的相互作用。用离散奇异点法解决了这一问题。可以得到任意点散射场的谱函数,得到所需的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plane Wave Diffraction by Finite-Element Mlti-Layered Strip Grating
This paper deals with plane wave diffraction problem where electromagnetic fields have continuous space spectrum. The operator method is good adjusted to such problems and allows obtaining results in wide ranges of parameters variations. The main moment of operator method using is the solution of mentioned above key problem - the interaction of plane wave spectrum with unity layer boundary problem. This problem has been solved with the discrete singularities method. The spectral function of scattered field in any point can be obtained to any desired degree of precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信