{"title":"利用泡利主方程高效模拟量子级联激光器","authors":"O. Baumgartner, Z. Stanojević, H. Kosina","doi":"10.1109/SISPAD.2011.6035057","DOIUrl":null,"url":null,"abstract":"A transport model for quantum cascade lasers based on the Pauli master equation is presented. An efficient Monte Carlo solver has been developed. The numerical methods to reduce the computational cost are discussed in detail. Finally, the simulator is used to obtain current-voltage characteristics as well as microscopic quantities of a mid infrared QCL structure.","PeriodicalId":264913,"journal":{"name":"2011 International Conference on Simulation of Semiconductor Processes and Devices","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient simulation of quantum cascade lasers using the Pauli master equation\",\"authors\":\"O. Baumgartner, Z. Stanojević, H. Kosina\",\"doi\":\"10.1109/SISPAD.2011.6035057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A transport model for quantum cascade lasers based on the Pauli master equation is presented. An efficient Monte Carlo solver has been developed. The numerical methods to reduce the computational cost are discussed in detail. Finally, the simulator is used to obtain current-voltage characteristics as well as microscopic quantities of a mid infrared QCL structure.\",\"PeriodicalId\":264913,\"journal\":{\"name\":\"2011 International Conference on Simulation of Semiconductor Processes and Devices\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Simulation of Semiconductor Processes and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2011.6035057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Simulation of Semiconductor Processes and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2011.6035057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient simulation of quantum cascade lasers using the Pauli master equation
A transport model for quantum cascade lasers based on the Pauli master equation is presented. An efficient Monte Carlo solver has been developed. The numerical methods to reduce the computational cost are discussed in detail. Finally, the simulator is used to obtain current-voltage characteristics as well as microscopic quantities of a mid infrared QCL structure.