基于H.264/AVC可伸缩扩展的纹理和深度图联合视频编码

Siping Tao, Ying Chen, M. Hannuksela, Ye-Kui Wang, M. Gabbouj, Houqiang Li
{"title":"基于H.264/AVC可伸缩扩展的纹理和深度图联合视频编码","authors":"Siping Tao, Ying Chen, M. Hannuksela, Ye-Kui Wang, M. Gabbouj, Houqiang Li","doi":"10.1109/ISCAS.2009.5118272","DOIUrl":null,"url":null,"abstract":"Depth-Image-Based Rendering (DIBR) is widely used for view synthesis in 3D video applications. Compared with traditional 2D video applications, both the texture video and its associated depth map are required for transmission in a communication system that supports DIBR. To efficiently utilize limited bandwidth, coding algorithms, e.g. the Advanced Video Coding (H.264/AVC) standard, can be adopted to compress the depth map using the 4:0:0 chroma sampling format. However, when the correlation between texture video and depth map is exploited, the compression efficiency may be improved compared with encoding them independently using H.264/AVC. A new encoder algorithm which employs Scalable Video Coding (SVC), the scalable extension of H.264/AVC, to compress the texture video and its associated depth map is proposed in this paper. Experimental results show that the proposed algorithm can provide up to 0.97 dB gain for the coded depth maps, compared with the simulcast scheme, wherein texture video and depth map are coded independently by H.264/AVC.","PeriodicalId":388394,"journal":{"name":"2009 IEEE International Symposium on Circuits and Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Joint texture and depth map video coding based on the scalable extension of H.264/AVC\",\"authors\":\"Siping Tao, Ying Chen, M. Hannuksela, Ye-Kui Wang, M. Gabbouj, Houqiang Li\",\"doi\":\"10.1109/ISCAS.2009.5118272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth-Image-Based Rendering (DIBR) is widely used for view synthesis in 3D video applications. Compared with traditional 2D video applications, both the texture video and its associated depth map are required for transmission in a communication system that supports DIBR. To efficiently utilize limited bandwidth, coding algorithms, e.g. the Advanced Video Coding (H.264/AVC) standard, can be adopted to compress the depth map using the 4:0:0 chroma sampling format. However, when the correlation between texture video and depth map is exploited, the compression efficiency may be improved compared with encoding them independently using H.264/AVC. A new encoder algorithm which employs Scalable Video Coding (SVC), the scalable extension of H.264/AVC, to compress the texture video and its associated depth map is proposed in this paper. Experimental results show that the proposed algorithm can provide up to 0.97 dB gain for the coded depth maps, compared with the simulcast scheme, wherein texture video and depth map are coded independently by H.264/AVC.\",\"PeriodicalId\":388394,\"journal\":{\"name\":\"2009 IEEE International Symposium on Circuits and Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2009.5118272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2009.5118272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

基于深度图像的渲染(deep - image - based Rendering, DIBR)广泛应用于三维视频应用中的视图合成。与传统的二维视频应用相比,在支持DIBR的通信系统中,纹理视频及其相关的深度图都需要进行传输。为了有效地利用有限的带宽,可以采用编码算法,例如高级视频编码(H.264/AVC)标准,使用4:0:0色度采样格式压缩深度图。然而,利用纹理视频和深度图之间的相关性,与使用H.264/AVC单独编码相比,可以提高压缩效率。本文提出了一种新的编码器算法,利用H.264/AVC的可伸缩扩展——可伸缩视频编码(SVC)来压缩纹理视频及其相关的深度图。实验结果表明,与采用H.264/AVC独立编码纹理视频和深度图的联播方案相比,该算法可提供高达0.97 dB的深度图编码增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint texture and depth map video coding based on the scalable extension of H.264/AVC
Depth-Image-Based Rendering (DIBR) is widely used for view synthesis in 3D video applications. Compared with traditional 2D video applications, both the texture video and its associated depth map are required for transmission in a communication system that supports DIBR. To efficiently utilize limited bandwidth, coding algorithms, e.g. the Advanced Video Coding (H.264/AVC) standard, can be adopted to compress the depth map using the 4:0:0 chroma sampling format. However, when the correlation between texture video and depth map is exploited, the compression efficiency may be improved compared with encoding them independently using H.264/AVC. A new encoder algorithm which employs Scalable Video Coding (SVC), the scalable extension of H.264/AVC, to compress the texture video and its associated depth map is proposed in this paper. Experimental results show that the proposed algorithm can provide up to 0.97 dB gain for the coded depth maps, compared with the simulcast scheme, wherein texture video and depth map are coded independently by H.264/AVC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信