{"title":"用于人机交互的触觉手势","authors":"R. Voyles, P. Khosla","doi":"10.1109/IROS.1995.525854","DOIUrl":null,"url":null,"abstract":"Gesture-based programming is a new paradigm to ease the burden of programming robots. By tapping in to the user's wealth of experience with contact transitions, compliance, uncertainty and operations sequencing, we hope to provide a more intuitive programming environment for complex, real-world tasks based on the expressiveness of nonverbal communication. A requirement for this to be accomplished is the ability to interpret gestures to infer the intentions behind them. As a first step toward this goal, this paper presents an application of distributed perception for inferring a user's intentions by observing tactile gestures. These gestures consist of sparse, inexact, physical \"nudges\" applied to the robot's end effector for the purpose of modifying its trajectory in free space. A set of independent agents-each with its own local, fuzzified, heuristic model of a particular trajectory parameter observes data from a wristforce/torque sensor to evaluate the gestures. The agents then independently determine the confidence of their respective findings and distributed arbitration resolves the interpretation through voting.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Tactile gestures for human/robot interaction\",\"authors\":\"R. Voyles, P. Khosla\",\"doi\":\"10.1109/IROS.1995.525854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gesture-based programming is a new paradigm to ease the burden of programming robots. By tapping in to the user's wealth of experience with contact transitions, compliance, uncertainty and operations sequencing, we hope to provide a more intuitive programming environment for complex, real-world tasks based on the expressiveness of nonverbal communication. A requirement for this to be accomplished is the ability to interpret gestures to infer the intentions behind them. As a first step toward this goal, this paper presents an application of distributed perception for inferring a user's intentions by observing tactile gestures. These gestures consist of sparse, inexact, physical \\\"nudges\\\" applied to the robot's end effector for the purpose of modifying its trajectory in free space. A set of independent agents-each with its own local, fuzzified, heuristic model of a particular trajectory parameter observes data from a wristforce/torque sensor to evaluate the gestures. The agents then independently determine the confidence of their respective findings and distributed arbitration resolves the interpretation through voting.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.525854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gesture-based programming is a new paradigm to ease the burden of programming robots. By tapping in to the user's wealth of experience with contact transitions, compliance, uncertainty and operations sequencing, we hope to provide a more intuitive programming environment for complex, real-world tasks based on the expressiveness of nonverbal communication. A requirement for this to be accomplished is the ability to interpret gestures to infer the intentions behind them. As a first step toward this goal, this paper presents an application of distributed perception for inferring a user's intentions by observing tactile gestures. These gestures consist of sparse, inexact, physical "nudges" applied to the robot's end effector for the purpose of modifying its trajectory in free space. A set of independent agents-each with its own local, fuzzified, heuristic model of a particular trajectory parameter observes data from a wristforce/torque sensor to evaluate the gestures. The agents then independently determine the confidence of their respective findings and distributed arbitration resolves the interpretation through voting.