{"title":"Mandrekar定理的其他证明","authors":"Linus Bergqvist","doi":"10.1090/bproc/156","DOIUrl":null,"url":null,"abstract":"We present two alternative proofs of Mandrekar’s theorem, which states that an invariant subspace of the Hardy space on the bidisc is of Beurling type precisely when the shifts satisfy a doubly commuting condition [Proc. Amer. Math. Soc. 103 (1988), pp. 145–148]. The first proof uses properties of Toeplitz operators to derive a formula for the reproducing kernel of certain shift invariant subspaces, which can then be used to characterize them. The second proof relies on the reproducing property in order to show that the reproducing kernel at the origin must generate the entire shift invariant subspace.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative proofs of Mandrekar’s theorem\",\"authors\":\"Linus Bergqvist\",\"doi\":\"10.1090/bproc/156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two alternative proofs of Mandrekar’s theorem, which states that an invariant subspace of the Hardy space on the bidisc is of Beurling type precisely when the shifts satisfy a doubly commuting condition [Proc. Amer. Math. Soc. 103 (1988), pp. 145–148]. The first proof uses properties of Toeplitz operators to derive a formula for the reproducing kernel of certain shift invariant subspaces, which can then be used to characterize them. The second proof relies on the reproducing property in order to show that the reproducing kernel at the origin must generate the entire shift invariant subspace.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present two alternative proofs of Mandrekar’s theorem, which states that an invariant subspace of the Hardy space on the bidisc is of Beurling type precisely when the shifts satisfy a doubly commuting condition [Proc. Amer. Math. Soc. 103 (1988), pp. 145–148]. The first proof uses properties of Toeplitz operators to derive a formula for the reproducing kernel of certain shift invariant subspaces, which can then be used to characterize them. The second proof relies on the reproducing property in order to show that the reproducing kernel at the origin must generate the entire shift invariant subspace.