{"title":"基于视觉的自主空间探索导航","authors":"G. Flandin, B. Polle, J. Lheritier, P. Vidal","doi":"10.1109/AHS.2010.5546273","DOIUrl":null,"url":null,"abstract":"As a passive light-weight system with a natural adaptation capacity to the environment, mimicking the human capacity for detecting hazards, vision-based navigation for space applications has been the subject of a sustained research effort in Europe for more than ten years. The “Navigation for Planetary Approach and Landing” (NPAL) ESA/Astrium Satellites project paved the way for a new European autonomous vision based navigation system called VisNAV, aiming at a proof of concept, with an elegant breadboard realization, preparing for the next step to flight demonstration. This paper presents the consolidated design, and HW/SW architecture of the real time implementation. It also addresses the validation strategy from simulation, making extensive use of virtual scene generation through a realistic modeling environment, to in-flight demonstration experiment, as well as the achievable performances.","PeriodicalId":101655,"journal":{"name":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Vision based navigation for autonomous space exploration\",\"authors\":\"G. Flandin, B. Polle, J. Lheritier, P. Vidal\",\"doi\":\"10.1109/AHS.2010.5546273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a passive light-weight system with a natural adaptation capacity to the environment, mimicking the human capacity for detecting hazards, vision-based navigation for space applications has been the subject of a sustained research effort in Europe for more than ten years. The “Navigation for Planetary Approach and Landing” (NPAL) ESA/Astrium Satellites project paved the way for a new European autonomous vision based navigation system called VisNAV, aiming at a proof of concept, with an elegant breadboard realization, preparing for the next step to flight demonstration. This paper presents the consolidated design, and HW/SW architecture of the real time implementation. It also addresses the validation strategy from simulation, making extensive use of virtual scene generation through a realistic modeling environment, to in-flight demonstration experiment, as well as the achievable performances.\",\"PeriodicalId\":101655,\"journal\":{\"name\":\"2010 NASA/ESA Conference on Adaptive Hardware and Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 NASA/ESA Conference on Adaptive Hardware and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2010.5546273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2010.5546273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vision based navigation for autonomous space exploration
As a passive light-weight system with a natural adaptation capacity to the environment, mimicking the human capacity for detecting hazards, vision-based navigation for space applications has been the subject of a sustained research effort in Europe for more than ten years. The “Navigation for Planetary Approach and Landing” (NPAL) ESA/Astrium Satellites project paved the way for a new European autonomous vision based navigation system called VisNAV, aiming at a proof of concept, with an elegant breadboard realization, preparing for the next step to flight demonstration. This paper presents the consolidated design, and HW/SW architecture of the real time implementation. It also addresses the validation strategy from simulation, making extensive use of virtual scene generation through a realistic modeling environment, to in-flight demonstration experiment, as well as the achievable performances.