{"title":"基于小信号转换导纳参数解析表达式的×4次谐波亚毫米波二极管混频器的设计","authors":"R. Michaelsen, T. Johansen, V. Krozer","doi":"10.1109/IMOC.2013.6646457","DOIUrl":null,"url":null,"abstract":"Instead of using frequency multipliers before a fundamental mixer, subharmonic mixers can be used. In order to develop novel subharmonic mixer architectures it is necessary to know the exact signal phase at the nonlinear element. The purpose of this paper is to generalize the description of the small-signal admittance in a Schottky-diode mixer where the phase can be set arbitrarily. It is shown that only for the case of a fundamental frequency mixer this admittance becomes a purely real valued conductance. To test the theory a ×4 subharmonic sub-millimeter wave mixer is designed and simulated. With an RF frequency of 640 GHz, this design achieves a conversion gain of -13.5 dB with a LO-power of only -2.5 dBm.","PeriodicalId":395359,"journal":{"name":"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design of a ×4 subharmonic sub-millimeter wave diode mixer, based on an analytic expression for small-signal conversion admittance parameters\",\"authors\":\"R. Michaelsen, T. Johansen, V. Krozer\",\"doi\":\"10.1109/IMOC.2013.6646457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instead of using frequency multipliers before a fundamental mixer, subharmonic mixers can be used. In order to develop novel subharmonic mixer architectures it is necessary to know the exact signal phase at the nonlinear element. The purpose of this paper is to generalize the description of the small-signal admittance in a Schottky-diode mixer where the phase can be set arbitrarily. It is shown that only for the case of a fundamental frequency mixer this admittance becomes a purely real valued conductance. To test the theory a ×4 subharmonic sub-millimeter wave mixer is designed and simulated. With an RF frequency of 640 GHz, this design achieves a conversion gain of -13.5 dB with a LO-power of only -2.5 dBm.\",\"PeriodicalId\":395359,\"journal\":{\"name\":\"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMOC.2013.6646457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2013.6646457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a ×4 subharmonic sub-millimeter wave diode mixer, based on an analytic expression for small-signal conversion admittance parameters
Instead of using frequency multipliers before a fundamental mixer, subharmonic mixers can be used. In order to develop novel subharmonic mixer architectures it is necessary to know the exact signal phase at the nonlinear element. The purpose of this paper is to generalize the description of the small-signal admittance in a Schottky-diode mixer where the phase can be set arbitrarily. It is shown that only for the case of a fundamental frequency mixer this admittance becomes a purely real valued conductance. To test the theory a ×4 subharmonic sub-millimeter wave mixer is designed and simulated. With an RF frequency of 640 GHz, this design achieves a conversion gain of -13.5 dB with a LO-power of only -2.5 dBm.