{"title":"肌肉电刺激的可穿戴力反馈工具包","authors":"Max Pfeiffer, Tim Dünte, M. Rohs","doi":"10.1145/2851581.2890238","DOIUrl":null,"url":null,"abstract":"Electrical muscle stimulation (EMS) is a promising wearable haptic output technology as it can be miniaturized and delivers a wide range of tactile and force output. However, prototyping EMS applications is currently challenging and requires detailed knowledge about EMS. We present a toolkit that simplifies prototyping with EMS and serves as a starting point for experimentation and user studies. It consists of (1) a hardware control module that uses off-the-shelf EMS devices as safe signal generators, (2) a simple communication protocol, and (3) a set of control applications for prototyping. The interactivity allows hands-on experimentation with our sample control applications.","PeriodicalId":285547,"journal":{"name":"Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Wearable Force Feedback Toolkit with Electrical Muscle Stimulation\",\"authors\":\"Max Pfeiffer, Tim Dünte, M. Rohs\",\"doi\":\"10.1145/2851581.2890238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical muscle stimulation (EMS) is a promising wearable haptic output technology as it can be miniaturized and delivers a wide range of tactile and force output. However, prototyping EMS applications is currently challenging and requires detailed knowledge about EMS. We present a toolkit that simplifies prototyping with EMS and serves as a starting point for experimentation and user studies. It consists of (1) a hardware control module that uses off-the-shelf EMS devices as safe signal generators, (2) a simple communication protocol, and (3) a set of control applications for prototyping. The interactivity allows hands-on experimentation with our sample control applications.\",\"PeriodicalId\":285547,\"journal\":{\"name\":\"Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2851581.2890238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2851581.2890238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Wearable Force Feedback Toolkit with Electrical Muscle Stimulation
Electrical muscle stimulation (EMS) is a promising wearable haptic output technology as it can be miniaturized and delivers a wide range of tactile and force output. However, prototyping EMS applications is currently challenging and requires detailed knowledge about EMS. We present a toolkit that simplifies prototyping with EMS and serves as a starting point for experimentation and user studies. It consists of (1) a hardware control module that uses off-the-shelf EMS devices as safe signal generators, (2) a simple communication protocol, and (3) a set of control applications for prototyping. The interactivity allows hands-on experimentation with our sample control applications.