K. Murata, P. Pavarangkoon, Kenji Suzuki, Kazunori Yamamoto, T. Asai, T. Kan, N. Katayama, M. Yahata, K. Muranaga, Takamichi Mizuhara, Ayahiro Takaki, E. Kimura
{"title":"地球静止轨道卫星的高速数据传输协议","authors":"K. Murata, P. Pavarangkoon, Kenji Suzuki, Kazunori Yamamoto, T. Asai, T. Kan, N. Katayama, M. Yahata, K. Muranaga, Takamichi Mizuhara, Ayahiro Takaki, E. Kimura","doi":"10.1109/ATC.2016.7764819","DOIUrl":null,"url":null,"abstract":"In communication systems using geostationary orbit satellites, throughput of transmission control protocol (TCP) is limited due to the impact of latency on network and packet loss caused by signal attenuation in severe weather conditions like heavy rain. It is high time to develop network techniques and applications in broadband communications over the gigabit satellite and the high throughput satellite (HTS). In this paper, we introduce a high-speed data transfer protocol, named high-performance and flexible protocol (HpFP), to achieve high throughput over a geostationary satellite link even in severe weather conditions. The HpFP is firstly evaluated on a laboratory experiment simulating a geostationary orbit satellite link. It is clarified that the HpFP shows high throughputs even when the packet loss ratio (PLR) is 0.01%. We next carry out a field experiment using the Wideband InterNetworking engineering test and Demonstration Satellite (WINDS). The performance of the HpFP over single, dual, and multiple connections are evaluated. The result shows that the aggregate throughput of dual connections of HpFP almost reaches to the maximum bandwidth, and the time to the maximum bandwidth is within 3 sec which is over 20 times faster than that by the TCP. For multiple connections, the HpFP shares the bandwidth equally among all 50 connections.","PeriodicalId":225413,"journal":{"name":"2016 International Conference on Advanced Technologies for Communications (ATC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A high-speed data transfer protocol for geostationary orbit satellites\",\"authors\":\"K. Murata, P. Pavarangkoon, Kenji Suzuki, Kazunori Yamamoto, T. Asai, T. Kan, N. Katayama, M. Yahata, K. Muranaga, Takamichi Mizuhara, Ayahiro Takaki, E. Kimura\",\"doi\":\"10.1109/ATC.2016.7764819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In communication systems using geostationary orbit satellites, throughput of transmission control protocol (TCP) is limited due to the impact of latency on network and packet loss caused by signal attenuation in severe weather conditions like heavy rain. It is high time to develop network techniques and applications in broadband communications over the gigabit satellite and the high throughput satellite (HTS). In this paper, we introduce a high-speed data transfer protocol, named high-performance and flexible protocol (HpFP), to achieve high throughput over a geostationary satellite link even in severe weather conditions. The HpFP is firstly evaluated on a laboratory experiment simulating a geostationary orbit satellite link. It is clarified that the HpFP shows high throughputs even when the packet loss ratio (PLR) is 0.01%. We next carry out a field experiment using the Wideband InterNetworking engineering test and Demonstration Satellite (WINDS). The performance of the HpFP over single, dual, and multiple connections are evaluated. The result shows that the aggregate throughput of dual connections of HpFP almost reaches to the maximum bandwidth, and the time to the maximum bandwidth is within 3 sec which is over 20 times faster than that by the TCP. For multiple connections, the HpFP shares the bandwidth equally among all 50 connections.\",\"PeriodicalId\":225413,\"journal\":{\"name\":\"2016 International Conference on Advanced Technologies for Communications (ATC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advanced Technologies for Communications (ATC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATC.2016.7764819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2016.7764819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high-speed data transfer protocol for geostationary orbit satellites
In communication systems using geostationary orbit satellites, throughput of transmission control protocol (TCP) is limited due to the impact of latency on network and packet loss caused by signal attenuation in severe weather conditions like heavy rain. It is high time to develop network techniques and applications in broadband communications over the gigabit satellite and the high throughput satellite (HTS). In this paper, we introduce a high-speed data transfer protocol, named high-performance and flexible protocol (HpFP), to achieve high throughput over a geostationary satellite link even in severe weather conditions. The HpFP is firstly evaluated on a laboratory experiment simulating a geostationary orbit satellite link. It is clarified that the HpFP shows high throughputs even when the packet loss ratio (PLR) is 0.01%. We next carry out a field experiment using the Wideband InterNetworking engineering test and Demonstration Satellite (WINDS). The performance of the HpFP over single, dual, and multiple connections are evaluated. The result shows that the aggregate throughput of dual connections of HpFP almost reaches to the maximum bandwidth, and the time to the maximum bandwidth is within 3 sec which is over 20 times faster than that by the TCP. For multiple connections, the HpFP shares the bandwidth equally among all 50 connections.