{"title":"用多离子注入制备具有拆分p柱的高性能超结umosfet","authors":"Y. Miura, H. Ninomiya, K. Kobayashi","doi":"10.1109/ISPSD.2005.1487945","DOIUrl":null,"url":null,"abstract":"We propose superjunction UMOSFET devices (SJ-UMOS) with split p-column structures for automotive applications with rated voltage of 40-75 V. The split p-column fabricated by multi-ion-implantations consists of p-type islands separated by small distances in an n-type epi-layer. This structure was designed to improve the repetitive inductive switching performance without sacrificing the original benefits of the SJ structure. We achieved a specific on-resistance of 28.7 m/spl Omega/mm/sup 2/ at a gate voltage of 10 V for breakdown voltage of 68.0 V. In addition, we confirmed high immunity against inductive switching stress at 175/spl deg/C and good reverse recovery properties.","PeriodicalId":154808,"journal":{"name":"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.","volume":"86 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"High performance superjunction UMOSFETs with split p-columns fabricated by multi-ion-implantations\",\"authors\":\"Y. Miura, H. Ninomiya, K. Kobayashi\",\"doi\":\"10.1109/ISPSD.2005.1487945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose superjunction UMOSFET devices (SJ-UMOS) with split p-column structures for automotive applications with rated voltage of 40-75 V. The split p-column fabricated by multi-ion-implantations consists of p-type islands separated by small distances in an n-type epi-layer. This structure was designed to improve the repetitive inductive switching performance without sacrificing the original benefits of the SJ structure. We achieved a specific on-resistance of 28.7 m/spl Omega/mm/sup 2/ at a gate voltage of 10 V for breakdown voltage of 68.0 V. In addition, we confirmed high immunity against inductive switching stress at 175/spl deg/C and good reverse recovery properties.\",\"PeriodicalId\":154808,\"journal\":{\"name\":\"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.\",\"volume\":\"86 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2005.1487945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2005.1487945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High performance superjunction UMOSFETs with split p-columns fabricated by multi-ion-implantations
We propose superjunction UMOSFET devices (SJ-UMOS) with split p-column structures for automotive applications with rated voltage of 40-75 V. The split p-column fabricated by multi-ion-implantations consists of p-type islands separated by small distances in an n-type epi-layer. This structure was designed to improve the repetitive inductive switching performance without sacrificing the original benefits of the SJ structure. We achieved a specific on-resistance of 28.7 m/spl Omega/mm/sup 2/ at a gate voltage of 10 V for breakdown voltage of 68.0 V. In addition, we confirmed high immunity against inductive switching stress at 175/spl deg/C and good reverse recovery properties.