{"title":"时间敏感网络的可靠性感知路由和调度","authors":"Niklas Reusch, Silviu S. Craciunas, Paul Pop","doi":"10.1049/cps2.12030","DOIUrl":null,"url":null,"abstract":"<p>Time-Sensitive Networking (TSN) extends IEEE 802.1 Ethernet for safety-critical and real-time applications in several areas, for example, automotive, aerospace or industrial automation. However, many of these systems also have stringent security requirements, and security attacks may impair safety. Given a TSN-based distributed architecture, a set of applications with tasks and messages as well as a set of security and redundancy requirements, the authors are interested to synthesise a system configuration such that the real-time, safety and security requirements are upheld. The Timed Efficient Stream Loss-Tolerant Authentication (TESLA) low-resource multicast authentication protocol is used to guarantee the security requirements and redundant disjunct message routes to tolerate link failures. The authors consider that tasks are dispatched using a static cyclic schedule table and that the messages use the time-sensitive traffic class in TSN, which relies on schedule tables (called Gate Control Lists, GCLs) in the network switches. A configuration consists of the schedule tables for tasks as well as the disjoint routes and GCLs for messages. A Constraint Programing-based formulation, which can be used to find an optimal solution with respect to the cost function, is proposed. Additionally, a Simulated Annealing-based metaheuristic, which can find good solution for large test cases, is proposed. The authors evaluate both approaches on several test cases.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12030","citationCount":"13","resultStr":"{\"title\":\"Dependability-aware routing and scheduling for Time-Sensitive Networking\",\"authors\":\"Niklas Reusch, Silviu S. Craciunas, Paul Pop\",\"doi\":\"10.1049/cps2.12030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Time-Sensitive Networking (TSN) extends IEEE 802.1 Ethernet for safety-critical and real-time applications in several areas, for example, automotive, aerospace or industrial automation. However, many of these systems also have stringent security requirements, and security attacks may impair safety. Given a TSN-based distributed architecture, a set of applications with tasks and messages as well as a set of security and redundancy requirements, the authors are interested to synthesise a system configuration such that the real-time, safety and security requirements are upheld. The Timed Efficient Stream Loss-Tolerant Authentication (TESLA) low-resource multicast authentication protocol is used to guarantee the security requirements and redundant disjunct message routes to tolerate link failures. The authors consider that tasks are dispatched using a static cyclic schedule table and that the messages use the time-sensitive traffic class in TSN, which relies on schedule tables (called Gate Control Lists, GCLs) in the network switches. A configuration consists of the schedule tables for tasks as well as the disjoint routes and GCLs for messages. A Constraint Programing-based formulation, which can be used to find an optimal solution with respect to the cost function, is proposed. Additionally, a Simulated Annealing-based metaheuristic, which can find good solution for large test cases, is proposed. The authors evaluate both approaches on several test cases.</p>\",\"PeriodicalId\":36881,\"journal\":{\"name\":\"IET Cyber-Physical Systems: Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12030\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cyber-Physical Systems: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dependability-aware routing and scheduling for Time-Sensitive Networking
Time-Sensitive Networking (TSN) extends IEEE 802.1 Ethernet for safety-critical and real-time applications in several areas, for example, automotive, aerospace or industrial automation. However, many of these systems also have stringent security requirements, and security attacks may impair safety. Given a TSN-based distributed architecture, a set of applications with tasks and messages as well as a set of security and redundancy requirements, the authors are interested to synthesise a system configuration such that the real-time, safety and security requirements are upheld. The Timed Efficient Stream Loss-Tolerant Authentication (TESLA) low-resource multicast authentication protocol is used to guarantee the security requirements and redundant disjunct message routes to tolerate link failures. The authors consider that tasks are dispatched using a static cyclic schedule table and that the messages use the time-sensitive traffic class in TSN, which relies on schedule tables (called Gate Control Lists, GCLs) in the network switches. A configuration consists of the schedule tables for tasks as well as the disjoint routes and GCLs for messages. A Constraint Programing-based formulation, which can be used to find an optimal solution with respect to the cost function, is proposed. Additionally, a Simulated Annealing-based metaheuristic, which can find good solution for large test cases, is proposed. The authors evaluate both approaches on several test cases.