{"title":"一种新型生物医学植入处理器的合适缓存组织","authors":"C. Strydis","doi":"10.1109/ICCD.2008.4751921","DOIUrl":null,"url":null,"abstract":"This paper evaluates various instruction- and data-cache organizations in terms of performance, power, energy and area on a suitably selected biomedical benchmark suite. The benchmark suite consists of compression, encryption and data-integrity algorithms as well as real implant applications, all executed on biomedical input datasets. Results are used to drive the (micro)architectural design of a novel microprocessor targeting microelectronic implants. Our profiling study has revealed a L1 instruction-cache of 8 KB size (when relaxed area constraints are imposed) and a L1 data-cache of 4 KB size, both structured as 2-way associative caches, as optimal organizations for the envisioned implant processor.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Suitable cache organizations for a novel biomedical implant processor\",\"authors\":\"C. Strydis\",\"doi\":\"10.1109/ICCD.2008.4751921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates various instruction- and data-cache organizations in terms of performance, power, energy and area on a suitably selected biomedical benchmark suite. The benchmark suite consists of compression, encryption and data-integrity algorithms as well as real implant applications, all executed on biomedical input datasets. Results are used to drive the (micro)architectural design of a novel microprocessor targeting microelectronic implants. Our profiling study has revealed a L1 instruction-cache of 8 KB size (when relaxed area constraints are imposed) and a L1 data-cache of 4 KB size, both structured as 2-way associative caches, as optimal organizations for the envisioned implant processor.\",\"PeriodicalId\":345501,\"journal\":{\"name\":\"2008 IEEE International Conference on Computer Design\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2008.4751921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Suitable cache organizations for a novel biomedical implant processor
This paper evaluates various instruction- and data-cache organizations in terms of performance, power, energy and area on a suitably selected biomedical benchmark suite. The benchmark suite consists of compression, encryption and data-integrity algorithms as well as real implant applications, all executed on biomedical input datasets. Results are used to drive the (micro)architectural design of a novel microprocessor targeting microelectronic implants. Our profiling study has revealed a L1 instruction-cache of 8 KB size (when relaxed area constraints are imposed) and a L1 data-cache of 4 KB size, both structured as 2-way associative caches, as optimal organizations for the envisioned implant processor.