Hermite-Hadamard型不等式,凸随机过程和katugampolattraction积分

Jorge E. Hernández H., J. Gómez
{"title":"Hermite-Hadamard型不等式,凸随机过程和katugampolattraction积分","authors":"Jorge E. Hernández H., J. Gómez","doi":"10.18273/revint.v36n2-2018005","DOIUrl":null,"url":null,"abstract":". In this work we present some Hermite-Hadamard type ine-qualities for convex Stochastic Processes using the Katugampola fractional integral, and from these results specific cases are deduced for the Riemann-Liouville fractional integral and Riemann integral. Also, a refinement of the aforementioned inequality is presented.","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hermite-Hadamard type inequalities, convex stochastic processes and Katugampolafractional integral\",\"authors\":\"Jorge E. Hernández H., J. Gómez\",\"doi\":\"10.18273/revint.v36n2-2018005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this work we present some Hermite-Hadamard type ine-qualities for convex Stochastic Processes using the Katugampola fractional integral, and from these results specific cases are deduced for the Riemann-Liouville fractional integral and Riemann integral. Also, a refinement of the aforementioned inequality is presented.\",\"PeriodicalId\":402331,\"journal\":{\"name\":\"Revista Integración\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Integración\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revint.v36n2-2018005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revint.v36n2-2018005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

. 本文利用Katugampola分数积分给出了凸随机过程的一些Hermite-Hadamard型九性质,并从这些结果推导出了Riemann- liouville分数积分和Riemann积分的具体情况。同时,对上述不等式进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hermite-Hadamard type inequalities, convex stochastic processes and Katugampolafractional integral
. In this work we present some Hermite-Hadamard type ine-qualities for convex Stochastic Processes using the Katugampola fractional integral, and from these results specific cases are deduced for the Riemann-Liouville fractional integral and Riemann integral. Also, a refinement of the aforementioned inequality is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信