基于简化非线性规划的次优自适应后退水平控制

H. Issa, H. Khan, J. Tar
{"title":"基于简化非线性规划的次优自适应后退水平控制","authors":"H. Issa, H. Khan, J. Tar","doi":"10.1109/INES52918.2021.9512918","DOIUrl":null,"url":null,"abstract":"In this paper, an \"Adaptive Receding Horizon Controller (ARHC)\" is exemplified in the suboptimal control of a Furuta pendulum. A dynamic model of strongly overestimated inertia and friction parameters is used in an RHC controller to track the nominal trajectory under cost terms penalizing the control forces. The so obtained \"optimized\" trajectory is tracked by an adaptive controller that uses a realistic approximate dynamic model of the controlled system. Since the approximate and the actual model contain considerably smaller inertia and friction parameters than that used for optimization the cautiously optimized trajectory can be precisely tracked by the actual system without suffering from heavy force burdens. The adaptivity is guaranteed by a \"Fixed Point Iteration\"-based approach that in this manner easily can be combined with the mathematical framework of optimal controllers. Instead of using Lagrange multipliers, the optimization happens through explicitly applying the dynamic model in forward Euler integration. The operation of the method is exemplified via numerical simulations.","PeriodicalId":427652,"journal":{"name":"2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Suboptimal Adaptive Receding Horizon Control Using Simplified Nonlinear Programming\",\"authors\":\"H. Issa, H. Khan, J. Tar\",\"doi\":\"10.1109/INES52918.2021.9512918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an \\\"Adaptive Receding Horizon Controller (ARHC)\\\" is exemplified in the suboptimal control of a Furuta pendulum. A dynamic model of strongly overestimated inertia and friction parameters is used in an RHC controller to track the nominal trajectory under cost terms penalizing the control forces. The so obtained \\\"optimized\\\" trajectory is tracked by an adaptive controller that uses a realistic approximate dynamic model of the controlled system. Since the approximate and the actual model contain considerably smaller inertia and friction parameters than that used for optimization the cautiously optimized trajectory can be precisely tracked by the actual system without suffering from heavy force burdens. The adaptivity is guaranteed by a \\\"Fixed Point Iteration\\\"-based approach that in this manner easily can be combined with the mathematical framework of optimal controllers. Instead of using Lagrange multipliers, the optimization happens through explicitly applying the dynamic model in forward Euler integration. The operation of the method is exemplified via numerical simulations.\",\"PeriodicalId\":427652,\"journal\":{\"name\":\"2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES52918.2021.9512918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES52918.2021.9512918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将“自适应后退地平线控制器”(ARHC)应用于古立摆的次优控制。在RHC控制器中使用了一个高度高估惯性和摩擦参数的动态模型来跟踪在代价项下惩罚控制力的标称轨迹。得到的“优化”轨迹由自适应控制器跟踪,该控制器采用被控系统的真实近似动态模型。由于近似模型和实际模型所包含的惯性和摩擦参数比用于优化的模型要小得多,因此谨慎优化的轨迹可以被实际系统精确跟踪,而不会受到沉重的力负担。基于“不动点迭代”的方法保证了自适应性,这种方法可以很容易地与最优控制器的数学框架相结合。优化不是使用拉格朗日乘子,而是通过显式地将动态模型应用于前向欧拉积分来实现。通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suboptimal Adaptive Receding Horizon Control Using Simplified Nonlinear Programming
In this paper, an "Adaptive Receding Horizon Controller (ARHC)" is exemplified in the suboptimal control of a Furuta pendulum. A dynamic model of strongly overestimated inertia and friction parameters is used in an RHC controller to track the nominal trajectory under cost terms penalizing the control forces. The so obtained "optimized" trajectory is tracked by an adaptive controller that uses a realistic approximate dynamic model of the controlled system. Since the approximate and the actual model contain considerably smaller inertia and friction parameters than that used for optimization the cautiously optimized trajectory can be precisely tracked by the actual system without suffering from heavy force burdens. The adaptivity is guaranteed by a "Fixed Point Iteration"-based approach that in this manner easily can be combined with the mathematical framework of optimal controllers. Instead of using Lagrange multipliers, the optimization happens through explicitly applying the dynamic model in forward Euler integration. The operation of the method is exemplified via numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信