基于光网络的磁盘写缓存

E. V. Carrera, Ricardo Bianchini
{"title":"基于光网络的磁盘写缓存","authors":"E. V. Carrera, Ricardo Bianchini","doi":"10.1109/PI.1999.806414","DOIUrl":null,"url":null,"abstract":"In this paper we propose a simple extension to the optical network of a scalable multiprocessor that optimizes page swap-outs significantly. More specifically, we propose to extend the network with an optical ring that not only transfers swapped-out pages between the local memories and the disks of the multiprocessor but also acts as a system-wide write cache for these pages. This extended optical network has several performance benefits: it provides a staging area where swapped-out pages can reside until the disk is free; it increases the possibility of combining several writes to disk; and it acts as a victim cache for pages that are swapped out and subsequently accessed by the same or a different processor. In order to evaluate the extent to which these benefits affect performance, we use detailed execution-driven simulations of several out-of-core parallel applications running on an 8-node scalable multiprocessor. Our results demonstrate that our optical ring provides consistent performance improvements, coming mostly from faster page swap-outs and victim caching. Based on these results and on our parameter space study, our main conclusion is that our optical ring is highly efficient under several architectural assumptions and for most out-of-core parallel applications.","PeriodicalId":157032,"journal":{"name":"Proceedings. 6th International Conference on Parallel Interconnects (PI'99) (Formerly Known as MPPOI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disk write caching with an optical network\",\"authors\":\"E. V. Carrera, Ricardo Bianchini\",\"doi\":\"10.1109/PI.1999.806414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a simple extension to the optical network of a scalable multiprocessor that optimizes page swap-outs significantly. More specifically, we propose to extend the network with an optical ring that not only transfers swapped-out pages between the local memories and the disks of the multiprocessor but also acts as a system-wide write cache for these pages. This extended optical network has several performance benefits: it provides a staging area where swapped-out pages can reside until the disk is free; it increases the possibility of combining several writes to disk; and it acts as a victim cache for pages that are swapped out and subsequently accessed by the same or a different processor. In order to evaluate the extent to which these benefits affect performance, we use detailed execution-driven simulations of several out-of-core parallel applications running on an 8-node scalable multiprocessor. Our results demonstrate that our optical ring provides consistent performance improvements, coming mostly from faster page swap-outs and victim caching. Based on these results and on our parameter space study, our main conclusion is that our optical ring is highly efficient under several architectural assumptions and for most out-of-core parallel applications.\",\"PeriodicalId\":157032,\"journal\":{\"name\":\"Proceedings. 6th International Conference on Parallel Interconnects (PI'99) (Formerly Known as MPPOI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 6th International Conference on Parallel Interconnects (PI'99) (Formerly Known as MPPOI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PI.1999.806414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 6th International Conference on Parallel Interconnects (PI'99) (Formerly Known as MPPOI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PI.1999.806414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个简单的扩展光网络的一个可扩展的多处理器,优化页面交换显着。更具体地说,我们建议用光环扩展网络,光环不仅在本地存储器和多处理器的磁盘之间传输交换出的页面,而且还充当这些页面的系统级写缓存。这种扩展的光网络有几个性能优势:它提供了一个临时区域,在磁盘空闲之前,交换出的页面可以驻留在该临时区域;它增加了将多个写操作合并到磁盘的可能性;它充当被交换出并随后由相同或不同处理器访问的页面的受害者缓存。为了评估这些好处对性能的影响程度,我们对运行在8节点可扩展多处理器上的几个核外并行应用程序进行了详细的执行驱动模拟。我们的结果表明,我们的光学环提供了一致的性能改进,主要来自更快的页面交换和受害者缓存。基于这些结果和我们的参数空间研究,我们的主要结论是,我们的光学环在几个架构假设下和大多数核外并行应用中都是高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disk write caching with an optical network
In this paper we propose a simple extension to the optical network of a scalable multiprocessor that optimizes page swap-outs significantly. More specifically, we propose to extend the network with an optical ring that not only transfers swapped-out pages between the local memories and the disks of the multiprocessor but also acts as a system-wide write cache for these pages. This extended optical network has several performance benefits: it provides a staging area where swapped-out pages can reside until the disk is free; it increases the possibility of combining several writes to disk; and it acts as a victim cache for pages that are swapped out and subsequently accessed by the same or a different processor. In order to evaluate the extent to which these benefits affect performance, we use detailed execution-driven simulations of several out-of-core parallel applications running on an 8-node scalable multiprocessor. Our results demonstrate that our optical ring provides consistent performance improvements, coming mostly from faster page swap-outs and victim caching. Based on these results and on our parameter space study, our main conclusion is that our optical ring is highly efficient under several architectural assumptions and for most out-of-core parallel applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信