一类非线性lipschitz离散系统的基于观测器的∞控制器

Bertrand Grandvallet, A. Zemouche, H. S. Ali, M. Boutayeb
{"title":"一类非线性lipschitz离散系统的基于观测器的<s:1>∞控制器","authors":"Bertrand Grandvallet, A. Zemouche, H. S. Ali, M. Boutayeb","doi":"10.1109/CDC.2012.6426361","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of observer-based H∞ stabilization for a class of nonlinear discrete-time systems. We propose a new design strategy in order to compute simultaneously the observer and the controller parameters. Thanks to the use of some matrix decompositions and other mathematical artifacts, we provide a novel sufficient synthesis condition expressed in term of Linear Matrix Inequality (LMI). The effectiveness of the proposed method is shown through many numerical examples.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observer based ℌ∞ controllers for a class of nonlinear lipschitz discrete-time systems\",\"authors\":\"Bertrand Grandvallet, A. Zemouche, H. S. Ali, M. Boutayeb\",\"doi\":\"10.1109/CDC.2012.6426361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of observer-based H∞ stabilization for a class of nonlinear discrete-time systems. We propose a new design strategy in order to compute simultaneously the observer and the controller parameters. Thanks to the use of some matrix decompositions and other mathematical artifacts, we provide a novel sufficient synthesis condition expressed in term of Linear Matrix Inequality (LMI). The effectiveness of the proposed method is shown through many numerical examples.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6426361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究一类非线性离散系统基于观测器的H∞镇定问题。为了同时计算观测器和控制器参数,我们提出了一种新的设计策略。利用矩阵分解和其他数学方法,我们提出了一种新的用线性矩阵不等式(LMI)表示的充分综合条件。数值算例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observer based ℌ∞ controllers for a class of nonlinear lipschitz discrete-time systems
This paper deals with the problem of observer-based H∞ stabilization for a class of nonlinear discrete-time systems. We propose a new design strategy in order to compute simultaneously the observer and the controller parameters. Thanks to the use of some matrix decompositions and other mathematical artifacts, we provide a novel sufficient synthesis condition expressed in term of Linear Matrix Inequality (LMI). The effectiveness of the proposed method is shown through many numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信