可扩展的可进化硬件应用于道路图像识别

J. Tørresen
{"title":"可扩展的可进化硬件应用于道路图像识别","authors":"J. Tørresen","doi":"10.1109/EH.2000.869362","DOIUrl":null,"url":null,"abstract":"Evolvable Hardware (EHW) has the potential to become a new target hardware for complex real-world applications. However, there are several problems that would have to be solved to make it widely applicable. This includes the difficulties in evolving large systems and the lack of generalization of gate level EHW. This paper proposes new methods targeting these problems, where a system is evolved by evolving smaller sub-systems. The experiments are based on a simplified image recognition task to be used in a roadway departure prevention system and later in an autonomous driving system. Special concern has been given to improve the generalization of the system. Experiments show that the number of generations required for evolution by the new method can be substantially reduced compared to evolving a system directly. This is with no reduction of the performance in the final system. Improvement in the generalization is shown as well.","PeriodicalId":432338,"journal":{"name":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Scalable evolvable hardware applied to road image recognition\",\"authors\":\"J. Tørresen\",\"doi\":\"10.1109/EH.2000.869362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolvable Hardware (EHW) has the potential to become a new target hardware for complex real-world applications. However, there are several problems that would have to be solved to make it widely applicable. This includes the difficulties in evolving large systems and the lack of generalization of gate level EHW. This paper proposes new methods targeting these problems, where a system is evolved by evolving smaller sub-systems. The experiments are based on a simplified image recognition task to be used in a roadway departure prevention system and later in an autonomous driving system. Special concern has been given to improve the generalization of the system. Experiments show that the number of generations required for evolution by the new method can be substantially reduced compared to evolving a system directly. This is with no reduction of the performance in the final system. Improvement in the generalization is shown as well.\",\"PeriodicalId\":432338,\"journal\":{\"name\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2000.869362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2000.869362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

可进化硬件(EHW)有可能成为复杂现实世界应用程序的新目标硬件。然而,要使它广泛适用,还必须解决几个问题。这包括发展大型系统的困难以及门级EHW缺乏通用性。本文提出了针对这些问题的新方法,其中系统是通过进化较小的子系统来进化的。这些实验是基于一个简化的图像识别任务,该任务将用于道路偏离预防系统,随后将用于自动驾驶系统。特别关注的是改进该系统的通用性。实验表明,与直接进化系统相比,新方法可以大大减少进化所需的世代数。这并没有降低最终系统的性能。在泛化方面也有改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable evolvable hardware applied to road image recognition
Evolvable Hardware (EHW) has the potential to become a new target hardware for complex real-world applications. However, there are several problems that would have to be solved to make it widely applicable. This includes the difficulties in evolving large systems and the lack of generalization of gate level EHW. This paper proposes new methods targeting these problems, where a system is evolved by evolving smaller sub-systems. The experiments are based on a simplified image recognition task to be used in a roadway departure prevention system and later in an autonomous driving system. Special concern has been given to improve the generalization of the system. Experiments show that the number of generations required for evolution by the new method can be substantially reduced compared to evolving a system directly. This is with no reduction of the performance in the final system. Improvement in the generalization is shown as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信