集成电路发动机热分析

Sourabh Kumar, R. Soni
{"title":"集成电路发动机热分析","authors":"Sourabh Kumar, R. Soni","doi":"10.24113/ijoscience.v7i7.396","DOIUrl":null,"url":null,"abstract":"Calculating the heat transfer rate of the engine is very difficult due to the complex geometry design of the engine and the periodic flow of air and fuel during engine operation for full cycles. Various theories hypothesize that about 25% of the energy contained in the fuel is converted into useful work and the remaining 75% is released into the environment by the engine. The main objective of the present work is to improve the heat transfer rate of existing constructions of the engine cylinder block by modifying its construction and also with new materials. To this end, two CAD models were created using CATIA software, then a transient thermal analysis with ANSYS at ambient temperature for the summer season of 45oC for the real one and the proposed internal combustion engine design was performed one after the other. Other to optimize the geometric parameters and improve the heat transfer rate. From the results of the transient thermal analysis, it was found that the proposed engine cylinder block design has better performance and heat transfer rates than the actual engine cylinder block design.","PeriodicalId":429424,"journal":{"name":"SMART MOVES JOURNAL IJOSCIENCE","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Analysis of IC Engine\",\"authors\":\"Sourabh Kumar, R. Soni\",\"doi\":\"10.24113/ijoscience.v7i7.396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calculating the heat transfer rate of the engine is very difficult due to the complex geometry design of the engine and the periodic flow of air and fuel during engine operation for full cycles. Various theories hypothesize that about 25% of the energy contained in the fuel is converted into useful work and the remaining 75% is released into the environment by the engine. The main objective of the present work is to improve the heat transfer rate of existing constructions of the engine cylinder block by modifying its construction and also with new materials. To this end, two CAD models were created using CATIA software, then a transient thermal analysis with ANSYS at ambient temperature for the summer season of 45oC for the real one and the proposed internal combustion engine design was performed one after the other. Other to optimize the geometric parameters and improve the heat transfer rate. From the results of the transient thermal analysis, it was found that the proposed engine cylinder block design has better performance and heat transfer rates than the actual engine cylinder block design.\",\"PeriodicalId\":429424,\"journal\":{\"name\":\"SMART MOVES JOURNAL IJOSCIENCE\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SMART MOVES JOURNAL IJOSCIENCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24113/ijoscience.v7i7.396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMART MOVES JOURNAL IJOSCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24113/ijoscience.v7i7.396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于发动机复杂的几何设计和发动机全循环运行过程中空气和燃料的周期性流动,计算发动机的传热率是非常困难的。各种理论假设,燃料中含有的大约25%的能量被转化为有用的功,其余的75%被发动机释放到环境中。本工作的主要目的是通过改进发动机缸体的结构和使用新材料来提高现有结构的传热率。为此,利用CATIA软件建立了两个CAD模型,然后利用ANSYS对实际内燃机和所提出的内燃机设计分别进行了45℃夏季环境温度下的瞬态热分析。其他优化几何参数,提高换热率。从瞬态热分析结果来看,所提出的发动机缸体设计比实际的发动机缸体设计具有更好的性能和传热率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Analysis of IC Engine
Calculating the heat transfer rate of the engine is very difficult due to the complex geometry design of the engine and the periodic flow of air and fuel during engine operation for full cycles. Various theories hypothesize that about 25% of the energy contained in the fuel is converted into useful work and the remaining 75% is released into the environment by the engine. The main objective of the present work is to improve the heat transfer rate of existing constructions of the engine cylinder block by modifying its construction and also with new materials. To this end, two CAD models were created using CATIA software, then a transient thermal analysis with ANSYS at ambient temperature for the summer season of 45oC for the real one and the proposed internal combustion engine design was performed one after the other. Other to optimize the geometric parameters and improve the heat transfer rate. From the results of the transient thermal analysis, it was found that the proposed engine cylinder block design has better performance and heat transfer rates than the actual engine cylinder block design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信