多层感知器的联合优化方法

Chen Yongsheng, Liang Biqing, Y. Baozong
{"title":"多层感知器的联合优化方法","authors":"Chen Yongsheng, Liang Biqing, Y. Baozong","doi":"10.1109/TENCON.1993.320126","DOIUrl":null,"url":null,"abstract":"The backpropagation algorithm (BP) is one of the most popular algorithms in neural network studies, but it is notorious for its slowness in achieving convergence. Based on the theory of unconstrained optimization, the union optimization method (UOM) is presented. The method consists of two parts: apply Descent Method to optimize objective function E=/spl Sigmasub p/E/sub p/; when E</spl epsi/, apply conjugate gradient method to optimize objective function. Apply the UOM to train speech pattern, the experiment result shows the convergence speed of UOM is fourteen times faster than conventional BP algorithm.<<ETX>>","PeriodicalId":110496,"journal":{"name":"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The union optimization method of multilayer perceptron\",\"authors\":\"Chen Yongsheng, Liang Biqing, Y. Baozong\",\"doi\":\"10.1109/TENCON.1993.320126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The backpropagation algorithm (BP) is one of the most popular algorithms in neural network studies, but it is notorious for its slowness in achieving convergence. Based on the theory of unconstrained optimization, the union optimization method (UOM) is presented. The method consists of two parts: apply Descent Method to optimize objective function E=/spl Sigmasub p/E/sub p/; when E</spl epsi/, apply conjugate gradient method to optimize objective function. Apply the UOM to train speech pattern, the experiment result shows the convergence speed of UOM is fourteen times faster than conventional BP algorithm.<<ETX>>\",\"PeriodicalId\":110496,\"journal\":{\"name\":\"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.1993.320126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1993.320126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

反向传播算法(BP)是神经网络研究中最流行的算法之一,但其收敛速度慢是众所周知的。基于无约束优化理论,提出了一种联合优化方法。该方法由两部分组成:采用下降法优化目标函数E=/spl Sigmasub p/E/sub p/;当E >
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The union optimization method of multilayer perceptron
The backpropagation algorithm (BP) is one of the most popular algorithms in neural network studies, but it is notorious for its slowness in achieving convergence. Based on the theory of unconstrained optimization, the union optimization method (UOM) is presented. The method consists of two parts: apply Descent Method to optimize objective function E=/spl Sigmasub p/E/sub p/; when E>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信