基于时间序列特征提取的车载网络系统入侵检测技术

Hiroki Suda, M. Natsui, T. Hanyu
{"title":"基于时间序列特征提取的车载网络系统入侵检测技术","authors":"Hiroki Suda, M. Natsui, T. Hanyu","doi":"10.1109/ISMVL.2018.00018","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a systematic intrusion detection algorithm based on time-series feature extraction for an in-vehicle network. Since packet-type valid data are transmitted inside an in-vehicle network periodically, illegal data due to unauthorized intrusion attack can be easily and uniformly detected by using periodical time-series feature of valid data, where recurrent neural network is a key tool to efficiently extract their time-series feature. In fact, through an evaluation using data acquired from actual vehicles, we show that the proposed method can detect typical intrusion attack patterns such as data modification attack and injection attack.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Systematic Intrusion Detection Technique for an In-vehicle Network Based on Time-Series Feature Extraction\",\"authors\":\"Hiroki Suda, M. Natsui, T. Hanyu\",\"doi\":\"10.1109/ISMVL.2018.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a systematic intrusion detection algorithm based on time-series feature extraction for an in-vehicle network. Since packet-type valid data are transmitted inside an in-vehicle network periodically, illegal data due to unauthorized intrusion attack can be easily and uniformly detected by using periodical time-series feature of valid data, where recurrent neural network is a key tool to efficiently extract their time-series feature. In fact, through an evaluation using data acquired from actual vehicles, we show that the proposed method can detect typical intrusion attack patterns such as data modification attack and injection attack.\",\"PeriodicalId\":434323,\"journal\":{\"name\":\"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2018.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

针对车载网络,提出了一种基于时间序列特征提取的系统入侵检测算法。由于包型有效数据在车载网络中是周期性传输的,利用有效数据的周期性时间序列特征可以方便、统一地检测出非法入侵攻击数据,而递归神经网络是有效提取非法入侵数据时间序列特征的关键工具。实际上,通过对实际车辆数据的评估,我们表明该方法可以检测到典型的入侵攻击模式,如数据修改攻击和注入攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic Intrusion Detection Technique for an In-vehicle Network Based on Time-Series Feature Extraction
In this paper, we propose a systematic intrusion detection algorithm based on time-series feature extraction for an in-vehicle network. Since packet-type valid data are transmitted inside an in-vehicle network periodically, illegal data due to unauthorized intrusion attack can be easily and uniformly detected by using periodical time-series feature of valid data, where recurrent neural network is a key tool to efficiently extract their time-series feature. In fact, through an evaluation using data acquired from actual vehicles, we show that the proposed method can detect typical intrusion attack patterns such as data modification attack and injection attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信