基于机器学习多目标优化的雾支持工业物联网网络切片模型

A. Ksentini, Maha Jebalia, S. Tabbane
{"title":"基于机器学习多目标优化的雾支持工业物联网网络切片模型","authors":"A. Ksentini, Maha Jebalia, S. Tabbane","doi":"10.1109/WETICE49692.2020.00042","DOIUrl":null,"url":null,"abstract":"Fog Computing, as a distributed middleware layer, is expected to bring Cloud capabilities closer to the IoT edge devices. Industrial IoT systems may benefit from the geographically distributed features of the fog nodes, to enhance several QoS requirements such as delay. However, heterogeneous IIoT data traffics require a specific process for each type of them. Thus we refer to a priority classification scheme to slice a fog-enabled IIoT network. For this purpose, we perform a multi-objective optimization algorithm enabled by a machine learning workbench to set a slicing strategy, taking into account the specific and relevant QoS metrics of each priority class. Our slicing model performs better results, in terms of data-rate, e2e delay and network usage, compared to a non-sliced reference model.","PeriodicalId":114214,"journal":{"name":"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fog-enabled Industrial IoT Network Slicing model based on ML-enabled Multi-objective Optimization\",\"authors\":\"A. Ksentini, Maha Jebalia, S. Tabbane\",\"doi\":\"10.1109/WETICE49692.2020.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog Computing, as a distributed middleware layer, is expected to bring Cloud capabilities closer to the IoT edge devices. Industrial IoT systems may benefit from the geographically distributed features of the fog nodes, to enhance several QoS requirements such as delay. However, heterogeneous IIoT data traffics require a specific process for each type of them. Thus we refer to a priority classification scheme to slice a fog-enabled IIoT network. For this purpose, we perform a multi-objective optimization algorithm enabled by a machine learning workbench to set a slicing strategy, taking into account the specific and relevant QoS metrics of each priority class. Our slicing model performs better results, in terms of data-rate, e2e delay and network usage, compared to a non-sliced reference model.\",\"PeriodicalId\":114214,\"journal\":{\"name\":\"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WETICE49692.2020.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE49692.2020.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

雾计算作为一个分布式中间件层,有望使云功能更接近物联网边缘设备。工业物联网系统可能受益于雾节点的地理分布特征,以增强延迟等若干QoS要求。然而,异构IIoT数据流量需要针对每种类型的特定流程。因此,我们参考优先级分类方案来切片支持雾的IIoT网络。为此,我们执行由机器学习工作台启用的多目标优化算法来设置切片策略,同时考虑到每个优先级类的特定和相关QoS指标。与非切片参考模型相比,我们的切片模型在数据速率、端到端延迟和网络使用方面表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fog-enabled Industrial IoT Network Slicing model based on ML-enabled Multi-objective Optimization
Fog Computing, as a distributed middleware layer, is expected to bring Cloud capabilities closer to the IoT edge devices. Industrial IoT systems may benefit from the geographically distributed features of the fog nodes, to enhance several QoS requirements such as delay. However, heterogeneous IIoT data traffics require a specific process for each type of them. Thus we refer to a priority classification scheme to slice a fog-enabled IIoT network. For this purpose, we perform a multi-objective optimization algorithm enabled by a machine learning workbench to set a slicing strategy, taking into account the specific and relevant QoS metrics of each priority class. Our slicing model performs better results, in terms of data-rate, e2e delay and network usage, compared to a non-sliced reference model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信