从稀疏和不确定的多传感器数据估计地形高程图

D. Belter, Przemyslaw Labecki, P. Skrzypczyński
{"title":"从稀疏和不确定的多传感器数据估计地形高程图","authors":"D. Belter, Przemyslaw Labecki, P. Skrzypczyński","doi":"10.1109/ROBIO.2012.6491052","DOIUrl":null,"url":null,"abstract":"This paper addresses the issues of unstructured terrain modelling for the purpose of motion planning in an insect-like walking robot. Starting from the well-established elevation grid concept adopted to the specific requirements of a small legged robot with limited perceptual capabilities we extend this idea to a multi-sensor system consisting of a 2D pitched laser scanner, and a stereo vision camera. We propose an extension of the usual, ad hoc elevation grid update mechanism by incorporating formal treatment of the spatial uncertainty, and show how data from different sensors can be fused into a consistent terrain model. Moreover, this paper describes a novel method for filling-in missing areas of the elevation grid, which appear due to erroneous data or the line-of-sight constraints of the sensors. This method takes into account the uncertainty of the multi-sensor data collected in the elevation grid.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Estimating terrain elevation maps from sparse and uncertain multi-sensor data\",\"authors\":\"D. Belter, Przemyslaw Labecki, P. Skrzypczyński\",\"doi\":\"10.1109/ROBIO.2012.6491052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issues of unstructured terrain modelling for the purpose of motion planning in an insect-like walking robot. Starting from the well-established elevation grid concept adopted to the specific requirements of a small legged robot with limited perceptual capabilities we extend this idea to a multi-sensor system consisting of a 2D pitched laser scanner, and a stereo vision camera. We propose an extension of the usual, ad hoc elevation grid update mechanism by incorporating formal treatment of the spatial uncertainty, and show how data from different sensors can be fused into a consistent terrain model. Moreover, this paper describes a novel method for filling-in missing areas of the elevation grid, which appear due to erroneous data or the line-of-sight constraints of the sensors. This method takes into account the uncertainty of the multi-sensor data collected in the elevation grid.\",\"PeriodicalId\":426468,\"journal\":{\"name\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2012.6491052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文研究了以类昆虫行走机器人运动规划为目的的非结构化地形建模问题。从采用的成熟的高程网格概念开始,到具有有限感知能力的小型腿式机器人的具体要求,我们将这一想法扩展到由2D倾斜激光扫描仪和立体视觉相机组成的多传感器系统。我们通过对空间不确定性的形式化处理,提出了一种对通常的临时高程网格更新机制的扩展,并展示了如何将来自不同传感器的数据融合到一致的地形模型中。此外,本文还提出了一种新的方法来填补由于数据错误或传感器视距限制而出现的高程网格缺失区域。该方法考虑了高程网格中多传感器采集数据的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating terrain elevation maps from sparse and uncertain multi-sensor data
This paper addresses the issues of unstructured terrain modelling for the purpose of motion planning in an insect-like walking robot. Starting from the well-established elevation grid concept adopted to the specific requirements of a small legged robot with limited perceptual capabilities we extend this idea to a multi-sensor system consisting of a 2D pitched laser scanner, and a stereo vision camera. We propose an extension of the usual, ad hoc elevation grid update mechanism by incorporating formal treatment of the spatial uncertainty, and show how data from different sensors can be fused into a consistent terrain model. Moreover, this paper describes a novel method for filling-in missing areas of the elevation grid, which appear due to erroneous data or the line-of-sight constraints of the sensors. This method takes into account the uncertainty of the multi-sensor data collected in the elevation grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信