估算印度经济的牺牲率:一个实证研究

C. Mohan, V. Verma
{"title":"估算印度经济的牺牲率:一个实证研究","authors":"C. Mohan, V. Verma","doi":"10.18311/GJEIS/2018/22997","DOIUrl":null,"url":null,"abstract":"This paper investigates the cost of reducing inflation that an economy pays in from of reduction in output. Sacrifice ratios is estimated for India using aggregate supply curve approach and direct method. The study uses quarterly data from Q2-1996 to Q2-2016 in India. Auto-Regressive Distributed Lag (ARDL) model is used for aggregate supply curve approach. However, the time varying sacrifice ratio is estimated for year 2006 to year 2015. Sacrifice ratio is estimated to be 1.30 percent for whole period whereas in period 2006 to 2015 it is ranging from -0.71 to 1.20. Whereas, in case of Ball’s direct method four episodes are identified and average sacrifice ratio of all four periods are estimated to be 1.23 and it is varying in the range of -1.56 to 4.55. During RBI’s expansionary policies sacrifice ratio is estimated to be higher than contractionary policies.","PeriodicalId":318809,"journal":{"name":"Global Journal of Enterprise Information System","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the Sacrifice Ratio for Indian Economy: An Empirical Study\",\"authors\":\"C. Mohan, V. Verma\",\"doi\":\"10.18311/GJEIS/2018/22997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the cost of reducing inflation that an economy pays in from of reduction in output. Sacrifice ratios is estimated for India using aggregate supply curve approach and direct method. The study uses quarterly data from Q2-1996 to Q2-2016 in India. Auto-Regressive Distributed Lag (ARDL) model is used for aggregate supply curve approach. However, the time varying sacrifice ratio is estimated for year 2006 to year 2015. Sacrifice ratio is estimated to be 1.30 percent for whole period whereas in period 2006 to 2015 it is ranging from -0.71 to 1.20. Whereas, in case of Ball’s direct method four episodes are identified and average sacrifice ratio of all four periods are estimated to be 1.23 and it is varying in the range of -1.56 to 4.55. During RBI’s expansionary policies sacrifice ratio is estimated to be higher than contractionary policies.\",\"PeriodicalId\":318809,\"journal\":{\"name\":\"Global Journal of Enterprise Information System\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Enterprise Information System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/GJEIS/2018/22997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Enterprise Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/GJEIS/2018/22997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个经济体为减少通货膨胀而付出的产出减少的成本。采用总供给曲线法和直接法对印度的牺牲率进行了估计。该研究使用了印度1996年第二季度至2016年第二季度的季度数据。总供给曲线法采用自回归分布滞后(ARDL)模型。但是,随时间变化的牺牲比率估计为2006年至2015年。从2006年到2015年,整个期间的损失率为1.30%,而在-0.71 ~ 1.20之间。然而,在Ball的直接法中,确定了四个阶段,估计所有四个时期的平均牺牲率为1.23,在-1.56至4.55的范围内变化。在印度央行的扩张性政策期间,估计牺牲率高于紧缩性政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the Sacrifice Ratio for Indian Economy: An Empirical Study
This paper investigates the cost of reducing inflation that an economy pays in from of reduction in output. Sacrifice ratios is estimated for India using aggregate supply curve approach and direct method. The study uses quarterly data from Q2-1996 to Q2-2016 in India. Auto-Regressive Distributed Lag (ARDL) model is used for aggregate supply curve approach. However, the time varying sacrifice ratio is estimated for year 2006 to year 2015. Sacrifice ratio is estimated to be 1.30 percent for whole period whereas in period 2006 to 2015 it is ranging from -0.71 to 1.20. Whereas, in case of Ball’s direct method four episodes are identified and average sacrifice ratio of all four periods are estimated to be 1.23 and it is varying in the range of -1.56 to 4.55. During RBI’s expansionary policies sacrifice ratio is estimated to be higher than contractionary policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信