AGATE -为移动软件无线电系统设计一种低功耗芯片多线程处理器

Krzysztof Marcinek, W. Pleskacz
{"title":"AGATE -为移动软件无线电系统设计一种低功耗芯片多线程处理器","authors":"Krzysztof Marcinek, W. Pleskacz","doi":"10.1109/DDECS.2012.6219018","DOIUrl":null,"url":null,"abstract":"Providing low power consumption, high throughput and flexible solution is a challenge during designing process of a mobile software defined radio (SDR) system. The need for simple software generation using common programming tools becomes also a very significant factor. The paper presents the design and implementation of a chip multithreading general-purpose processor core (GPP), as the first step towards designing a flexible and programmer friendly SDR processor platform. Software tools developed for the hardware are described. The future work will be focused on designing tightly-coupled coprocessor extensions (TCC) for an application specific digital signal processing (DSP) purposes. AGATE processor system is described in form of a highly configurable library using Verilog language. The concept verification process was performed on the Xilinx Virtex-6 ML605 FPGA evaluation board. The maximum achieved frequency for the 8-thread processor is 190 MHz. Gate level simulation along with Value Change Dump (VCD) power estimation analysis were performed using three CMOS technologies: 130 nm, 90 nm and 65 nm. AGATE is capable of performing up to 0.72 DMIPS/MHz/thread with the maximum frequency of over 700 MHz and the power consumption of about 3 mW/core using 65 nm process.","PeriodicalId":131623,"journal":{"name":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"AGATE - towards designing a low-power chip multithreading processor for mobile software defined radio systems\",\"authors\":\"Krzysztof Marcinek, W. Pleskacz\",\"doi\":\"10.1109/DDECS.2012.6219018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Providing low power consumption, high throughput and flexible solution is a challenge during designing process of a mobile software defined radio (SDR) system. The need for simple software generation using common programming tools becomes also a very significant factor. The paper presents the design and implementation of a chip multithreading general-purpose processor core (GPP), as the first step towards designing a flexible and programmer friendly SDR processor platform. Software tools developed for the hardware are described. The future work will be focused on designing tightly-coupled coprocessor extensions (TCC) for an application specific digital signal processing (DSP) purposes. AGATE processor system is described in form of a highly configurable library using Verilog language. The concept verification process was performed on the Xilinx Virtex-6 ML605 FPGA evaluation board. The maximum achieved frequency for the 8-thread processor is 190 MHz. Gate level simulation along with Value Change Dump (VCD) power estimation analysis were performed using three CMOS technologies: 130 nm, 90 nm and 65 nm. AGATE is capable of performing up to 0.72 DMIPS/MHz/thread with the maximum frequency of over 700 MHz and the power consumption of about 3 mW/core using 65 nm process.\",\"PeriodicalId\":131623,\"journal\":{\"name\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2012.6219018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2012.6219018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提供低功耗、高吞吐量和灵活的解决方案是移动软件定义无线电(SDR)系统设计过程中的挑战。使用通用编程工具生成简单软件的需求也成为一个非常重要的因素。本文提出了一个芯片多线程通用处理器核心(GPP)的设计和实现,作为设计一个灵活和程序员友好的SDR处理器平台的第一步。介绍了为硬件开发的软件工具。未来的工作将集中在设计紧密耦合的协处理器扩展(TCC),用于特定应用的数字信号处理(DSP)目的。AGATE处理器系统采用Verilog语言,以高度可配置库的形式进行描述。概念验证过程在Xilinx Virtex-6 ML605 FPGA评估板上进行。8线程处理器实现的最大频率是190 MHz。采用130 nm、90 nm和65 nm三种CMOS技术进行栅极级仿真和VCD (Value Change Dump)功率估计分析。AGATE能够执行高达0.72 DMIPS/MHz/线程,最大频率超过700 MHz,功耗约为3 mW/core,使用65 nm工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AGATE - towards designing a low-power chip multithreading processor for mobile software defined radio systems
Providing low power consumption, high throughput and flexible solution is a challenge during designing process of a mobile software defined radio (SDR) system. The need for simple software generation using common programming tools becomes also a very significant factor. The paper presents the design and implementation of a chip multithreading general-purpose processor core (GPP), as the first step towards designing a flexible and programmer friendly SDR processor platform. Software tools developed for the hardware are described. The future work will be focused on designing tightly-coupled coprocessor extensions (TCC) for an application specific digital signal processing (DSP) purposes. AGATE processor system is described in form of a highly configurable library using Verilog language. The concept verification process was performed on the Xilinx Virtex-6 ML605 FPGA evaluation board. The maximum achieved frequency for the 8-thread processor is 190 MHz. Gate level simulation along with Value Change Dump (VCD) power estimation analysis were performed using three CMOS technologies: 130 nm, 90 nm and 65 nm. AGATE is capable of performing up to 0.72 DMIPS/MHz/thread with the maximum frequency of over 700 MHz and the power consumption of about 3 mW/core using 65 nm process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信