基于Gabor小波、dct -神经网络、混合空间特征相互依赖矩阵的人脸图像识别

S. Fernandes, G. J. Bala
{"title":"基于Gabor小波、dct -神经网络、混合空间特征相互依赖矩阵的人脸图像识别","authors":"S. Fernandes, G. J. Bala","doi":"10.1109/ICDCSYST.2014.6926130","DOIUrl":null,"url":null,"abstract":"Recognizing faces from images acquired from distant cameras are still a challenging task because these images are usually corrupted by various noises and blurring effects. In this paper we have developed and analyzed Gabor Wavelets, Discrete Cosine Transform (DCT)-Neural Network and Hybrid Spatial Feature Interdependence Matrix (HSFIM) for face recognition in the presence of various noises and blurring effects. We simulate the real world scenario by adding noises: Gaussian noise, Salt and pepper noise and also adding blurring effects: Motion blur and Gaussian blur. To compare the performance of Gabor Wavelets, DCT-Neural Network, and HSFIM we have considered six standard public face databases: IITK, ATT, JAFEE, CALTECH, GRIMACE, and SHEFFIELD.","PeriodicalId":252016,"journal":{"name":"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Recognizing facial images using Gabor Wavelets, DCT-Neural Network, Hybrid Spatial Feature Interdependence Matrix\",\"authors\":\"S. Fernandes, G. J. Bala\",\"doi\":\"10.1109/ICDCSYST.2014.6926130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing faces from images acquired from distant cameras are still a challenging task because these images are usually corrupted by various noises and blurring effects. In this paper we have developed and analyzed Gabor Wavelets, Discrete Cosine Transform (DCT)-Neural Network and Hybrid Spatial Feature Interdependence Matrix (HSFIM) for face recognition in the presence of various noises and blurring effects. We simulate the real world scenario by adding noises: Gaussian noise, Salt and pepper noise and also adding blurring effects: Motion blur and Gaussian blur. To compare the performance of Gabor Wavelets, DCT-Neural Network, and HSFIM we have considered six standard public face databases: IITK, ATT, JAFEE, CALTECH, GRIMACE, and SHEFFIELD.\",\"PeriodicalId\":252016,\"journal\":{\"name\":\"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCSYST.2014.6926130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSYST.2014.6926130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

从远程摄像机获取的图像中识别人脸仍然是一项具有挑战性的任务,因为这些图像通常会受到各种噪声和模糊效果的破坏。在本文中,我们开发并分析了Gabor小波,离散余弦变换(DCT)-神经网络和混合空间特征相互依赖矩阵(HSFIM)用于存在各种噪声和模糊效果的人脸识别。我们通过添加噪声来模拟真实世界的场景:高斯噪声,盐和胡椒噪声,并添加模糊效果:运动模糊和高斯模糊。为了比较Gabor小波、dct -神经网络和HSFIM的性能,我们考虑了六个标准的公共人脸数据库:IITK、ATT、JAFEE、CALTECH、GRIMACE和SHEFFIELD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing facial images using Gabor Wavelets, DCT-Neural Network, Hybrid Spatial Feature Interdependence Matrix
Recognizing faces from images acquired from distant cameras are still a challenging task because these images are usually corrupted by various noises and blurring effects. In this paper we have developed and analyzed Gabor Wavelets, Discrete Cosine Transform (DCT)-Neural Network and Hybrid Spatial Feature Interdependence Matrix (HSFIM) for face recognition in the presence of various noises and blurring effects. We simulate the real world scenario by adding noises: Gaussian noise, Salt and pepper noise and also adding blurring effects: Motion blur and Gaussian blur. To compare the performance of Gabor Wavelets, DCT-Neural Network, and HSFIM we have considered six standard public face databases: IITK, ATT, JAFEE, CALTECH, GRIMACE, and SHEFFIELD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信