基于径向基函数神经网络的PID智能优化研究

Wei Wu, Sheng Zhong, Guopeng Zhou
{"title":"基于径向基函数神经网络的PID智能优化研究","authors":"Wei Wu, Sheng Zhong, Guopeng Zhou","doi":"10.1109/CECNET.2013.6703271","DOIUrl":null,"url":null,"abstract":"Application of Neural Networks (NN) control receives worthy results in approximation to unknown dynamic systems. This paper presents an intelligent controller based on radial basis function neural networks as an improvement model from traditional PID control for the novelty: construct a radial basis function neural network to identify the uncertainly load disturbance online thus adjust parameters timely with self-adapting ability. The simulation verifies the effectiveness of this control strategy.","PeriodicalId":427418,"journal":{"name":"2013 3rd International Conference on Consumer Electronics, Communications and Networks","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A study on PID intelligent optimization based on radial basis function neural networks\",\"authors\":\"Wei Wu, Sheng Zhong, Guopeng Zhou\",\"doi\":\"10.1109/CECNET.2013.6703271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application of Neural Networks (NN) control receives worthy results in approximation to unknown dynamic systems. This paper presents an intelligent controller based on radial basis function neural networks as an improvement model from traditional PID control for the novelty: construct a radial basis function neural network to identify the uncertainly load disturbance online thus adjust parameters timely with self-adapting ability. The simulation verifies the effectiveness of this control strategy.\",\"PeriodicalId\":427418,\"journal\":{\"name\":\"2013 3rd International Conference on Consumer Electronics, Communications and Networks\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 3rd International Conference on Consumer Electronics, Communications and Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CECNET.2013.6703271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd International Conference on Consumer Electronics, Communications and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CECNET.2013.6703271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

应用神经网络(NN)控制对未知动态系统进行逼近,得到了有价值的结果。本文提出了一种基于径向基函数神经网络的智能控制器,作为传统PID控制的改进模型,构造径向基函数神经网络在线识别不确定负载扰动,及时调整参数,使其具有自适应能力。仿真结果验证了该控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on PID intelligent optimization based on radial basis function neural networks
Application of Neural Networks (NN) control receives worthy results in approximation to unknown dynamic systems. This paper presents an intelligent controller based on radial basis function neural networks as an improvement model from traditional PID control for the novelty: construct a radial basis function neural network to identify the uncertainly load disturbance online thus adjust parameters timely with self-adapting ability. The simulation verifies the effectiveness of this control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信