局部化,共形运动和duistermaat-heckman定理

L. Paniak
{"title":"局部化,共形运动和duistermaat-heckman定理","authors":"L. Paniak","doi":"10.1080/01422419708219643","DOIUrl":null,"url":null,"abstract":"Abstract Here we develop an explicitly covariant expression for the stationary phase approximation of a classical partition function based on geometric properties of the phase space. As an example of the utility of such an evaluation we show that in the case of the Hamiltonian flows generating conformal rescalings of the underlying geometry, the classical partition function is given exactly by the leading term of the stationary phase approximation. We give an explicit example of such an extension of the Duistermaat-Heckman theorem.","PeriodicalId":264948,"journal":{"name":"Surveys in High Energy Physics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization, conformal motions and the duistermaat-heckman theorem\",\"authors\":\"L. Paniak\",\"doi\":\"10.1080/01422419708219643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Here we develop an explicitly covariant expression for the stationary phase approximation of a classical partition function based on geometric properties of the phase space. As an example of the utility of such an evaluation we show that in the case of the Hamiltonian flows generating conformal rescalings of the underlying geometry, the classical partition function is given exactly by the leading term of the stationary phase approximation. We give an explicit example of such an extension of the Duistermaat-Heckman theorem.\",\"PeriodicalId\":264948,\"journal\":{\"name\":\"Surveys in High Energy Physics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01422419708219643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01422419708219643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文基于相空间的几何性质,给出了经典配分函数的定相近似的显式协变表达式。作为这种评价的实用性的一个例子,我们表明,在哈密顿流产生底层几何的保形重标的情况下,经典配分函数是由固定相近似的前项精确给出的。我们给出了Duistermaat-Heckman定理的这种推广的一个显式例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization, conformal motions and the duistermaat-heckman theorem
Abstract Here we develop an explicitly covariant expression for the stationary phase approximation of a classical partition function based on geometric properties of the phase space. As an example of the utility of such an evaluation we show that in the case of the Hamiltonian flows generating conformal rescalings of the underlying geometry, the classical partition function is given exactly by the leading term of the stationary phase approximation. We give an explicit example of such an extension of the Duistermaat-Heckman theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信