虹膜识别的频率和纹理特征

Una Tuba, Eva Tuba, Romana Capor Hrosik, M. Tuba, M. Veinovic
{"title":"虹膜识别的频率和纹理特征","authors":"Una Tuba, Eva Tuba, Romana Capor Hrosik, M. Tuba, M. Veinovic","doi":"10.1109/TELFOR56187.2022.9983787","DOIUrl":null,"url":null,"abstract":"Digital images and digital image processing have become a vital part of numerous applications, in every day life, science, security, health, etc. The iris of the human eye is a great biometric parameter that can be used for a person’s identification due to its richness and uniqueness in texture and other features. In this paper, a simple method based on the local binary pattern as a texture descriptor and frequency coefficients is proposed. After extracting the eye region, the iris region is found and features are calculated for that region of interest. A support vector machine is used for classification. The proposed method is tested on a well-known CASIA Interval-v4 dataset and the results are improved compared to methods that only use one of these features or a different set of features.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency and Texture Features for Iris Recognition\",\"authors\":\"Una Tuba, Eva Tuba, Romana Capor Hrosik, M. Tuba, M. Veinovic\",\"doi\":\"10.1109/TELFOR56187.2022.9983787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital images and digital image processing have become a vital part of numerous applications, in every day life, science, security, health, etc. The iris of the human eye is a great biometric parameter that can be used for a person’s identification due to its richness and uniqueness in texture and other features. In this paper, a simple method based on the local binary pattern as a texture descriptor and frequency coefficients is proposed. After extracting the eye region, the iris region is found and features are calculated for that region of interest. A support vector machine is used for classification. The proposed method is tested on a well-known CASIA Interval-v4 dataset and the results are improved compared to methods that only use one of these features or a different set of features.\",\"PeriodicalId\":277553,\"journal\":{\"name\":\"2022 30th Telecommunications Forum (TELFOR)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Telecommunications Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR56187.2022.9983787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字图像和数字图像处理已经成为众多应用中至关重要的一部分,在日常生活、科学、安防、健康等方面都有应用。人眼虹膜由于其纹理等特征的丰富性和唯一性,是一种重要的生物特征参数,可用于人的身份识别。本文提出了一种基于局部二值模式作为纹理描述符和频率系数的简单方法。提取眼部区域后,找到虹膜区域并计算感兴趣区域的特征。支持向量机用于分类。在一个著名的CASIA Interval-v4数据集上对所提出的方法进行了测试,与只使用这些特征中的一个或一组不同特征的方法相比,结果有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency and Texture Features for Iris Recognition
Digital images and digital image processing have become a vital part of numerous applications, in every day life, science, security, health, etc. The iris of the human eye is a great biometric parameter that can be used for a person’s identification due to its richness and uniqueness in texture and other features. In this paper, a simple method based on the local binary pattern as a texture descriptor and frequency coefficients is proposed. After extracting the eye region, the iris region is found and features are calculated for that region of interest. A support vector machine is used for classification. The proposed method is tested on a well-known CASIA Interval-v4 dataset and the results are improved compared to methods that only use one of these features or a different set of features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信