G. Qiu, M. Si, Yixiu Wang, X. Lyu, Wenzhuo Wu, P. Ye
{"title":"原子层沉积介质掺杂技术制备高性能少层碲CMOS器件","authors":"G. Qiu, M. Si, Yixiu Wang, X. Lyu, Wenzhuo Wu, P. Ye","doi":"10.1109/DRC.2018.8442253","DOIUrl":null,"url":null,"abstract":"Tellurium (Te) is a p-type narrow bandgap (0.35 eV, direct) semiconductor with high hole mobility around 700 cm2/Vs. [1] The lattice of Te is formed by 1D helical atomic chains and the neighboring chains are interconnected by van der Waals forces as shown in Fig. 1(a) [2]. Recently a liquid-based synthesis method was proposed to produce high-quality large-area 2D tellurium films with atomic flat surfaces [1], and high-performance p-MOSFETs based on few-layer tellurium films were demonstrated with large on-state current ($(> 1$ A/mm), high on/off ratio (∼106) and great stability for over two months in air [1]. However, like most of other 2D materials, the lack of doping techniques [3], [4] to obtain its counterpart n-FETs is a major roadblock against the realization of Te CMOS or steep-slope devices. In this paper, for the first time, we demonstrated Te n-FETs enabled by atomic layer deposited (ALD) dielectric doping technique with large drive current (200 mA/mm) and reasonable on/off ratio (∼103). The n-FETs show almost symmetric operation as p-FETs and comparable field-effect mobility of 612 cm2/Vs. Using low work function metal, the on-state contact resistance is reduced to $4.3 \\mathrm{k}\\Omega\\cdot\\mu \\mathrm{m}$. The impacts of oxide layer type and thickness on doping effect are also systematically studied.","PeriodicalId":269641,"journal":{"name":"2018 76th Device Research Conference (DRC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"High-Performance Few-Layer Tellurium CMOS Devices Enabled by Atomic Layer Deposited Dielectric Doping Technique\",\"authors\":\"G. Qiu, M. Si, Yixiu Wang, X. Lyu, Wenzhuo Wu, P. Ye\",\"doi\":\"10.1109/DRC.2018.8442253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tellurium (Te) is a p-type narrow bandgap (0.35 eV, direct) semiconductor with high hole mobility around 700 cm2/Vs. [1] The lattice of Te is formed by 1D helical atomic chains and the neighboring chains are interconnected by van der Waals forces as shown in Fig. 1(a) [2]. Recently a liquid-based synthesis method was proposed to produce high-quality large-area 2D tellurium films with atomic flat surfaces [1], and high-performance p-MOSFETs based on few-layer tellurium films were demonstrated with large on-state current ($(> 1$ A/mm), high on/off ratio (∼106) and great stability for over two months in air [1]. However, like most of other 2D materials, the lack of doping techniques [3], [4] to obtain its counterpart n-FETs is a major roadblock against the realization of Te CMOS or steep-slope devices. In this paper, for the first time, we demonstrated Te n-FETs enabled by atomic layer deposited (ALD) dielectric doping technique with large drive current (200 mA/mm) and reasonable on/off ratio (∼103). The n-FETs show almost symmetric operation as p-FETs and comparable field-effect mobility of 612 cm2/Vs. Using low work function metal, the on-state contact resistance is reduced to $4.3 \\\\mathrm{k}\\\\Omega\\\\cdot\\\\mu \\\\mathrm{m}$. The impacts of oxide layer type and thickness on doping effect are also systematically studied.\",\"PeriodicalId\":269641,\"journal\":{\"name\":\"2018 76th Device Research Conference (DRC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 76th Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2018.8442253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 76th Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2018.8442253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tellurium (Te) is a p-type narrow bandgap (0.35 eV, direct) semiconductor with high hole mobility around 700 cm2/Vs. [1] The lattice of Te is formed by 1D helical atomic chains and the neighboring chains are interconnected by van der Waals forces as shown in Fig. 1(a) [2]. Recently a liquid-based synthesis method was proposed to produce high-quality large-area 2D tellurium films with atomic flat surfaces [1], and high-performance p-MOSFETs based on few-layer tellurium films were demonstrated with large on-state current ($(> 1$ A/mm), high on/off ratio (∼106) and great stability for over two months in air [1]. However, like most of other 2D materials, the lack of doping techniques [3], [4] to obtain its counterpart n-FETs is a major roadblock against the realization of Te CMOS or steep-slope devices. In this paper, for the first time, we demonstrated Te n-FETs enabled by atomic layer deposited (ALD) dielectric doping technique with large drive current (200 mA/mm) and reasonable on/off ratio (∼103). The n-FETs show almost symmetric operation as p-FETs and comparable field-effect mobility of 612 cm2/Vs. Using low work function metal, the on-state contact resistance is reduced to $4.3 \mathrm{k}\Omega\cdot\mu \mathrm{m}$. The impacts of oxide layer type and thickness on doping effect are also systematically studied.