人群源遗产图像特征提取与分类

Pratiksha Benagi, S. Meena, Uday Kulkarni, S. Shetty
{"title":"人群源遗产图像特征提取与分类","authors":"Pratiksha Benagi, S. Meena, Uday Kulkarni, S. Shetty","doi":"10.1109/ICCTCT.2018.8550898","DOIUrl":null,"url":null,"abstract":"Textures are the most important features that describe an image. To find the relevant and specific information about images and classify them properly, a robust machine learning algorithm should be trained. The paper focuses on identifying monuments by applying statistical texture analysis and classification using SVM algorithm. Our case study is towards the monuments in and around Hubli-Dharwad city that is collected as crowd sourced image database and tested as a part of the Indian digital heritage project","PeriodicalId":344188,"journal":{"name":"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Feature Extraction and Classification of Heritage Image from Crowd Source\",\"authors\":\"Pratiksha Benagi, S. Meena, Uday Kulkarni, S. Shetty\",\"doi\":\"10.1109/ICCTCT.2018.8550898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Textures are the most important features that describe an image. To find the relevant and specific information about images and classify them properly, a robust machine learning algorithm should be trained. The paper focuses on identifying monuments by applying statistical texture analysis and classification using SVM algorithm. Our case study is towards the monuments in and around Hubli-Dharwad city that is collected as crowd sourced image database and tested as a part of the Indian digital heritage project\",\"PeriodicalId\":344188,\"journal\":{\"name\":\"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTCT.2018.8550898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTCT.2018.8550898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

纹理是描述图像的最重要的特征。为了找到有关图像的相关和特定信息并对其进行正确分类,需要训练一个鲁棒的机器学习算法。本文主要利用统计纹理分析和支持向量机算法对古迹进行识别。我们的案例研究是针对hubi - dharwad市及其周围的纪念碑,这些纪念碑被收集为人群来源的图像数据库,并作为印度数字遗产项目的一部分进行测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Extraction and Classification of Heritage Image from Crowd Source
Textures are the most important features that describe an image. To find the relevant and specific information about images and classify them properly, a robust machine learning algorithm should be trained. The paper focuses on identifying monuments by applying statistical texture analysis and classification using SVM algorithm. Our case study is towards the monuments in and around Hubli-Dharwad city that is collected as crowd sourced image database and tested as a part of the Indian digital heritage project
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信