添加语义分割的新类

K. Ueki
{"title":"添加语义分割的新类","authors":"K. Ueki","doi":"10.1109/NICOInt.2019.00029","DOIUrl":null,"url":null,"abstract":"To implement semantic segmentation and assign one of the classes to each pixel, a large amount of pixel labelled images are required. However, annotations in existing image datasets are limited both in terms of quantity and diversity owing to the heavy annotation cost. Therefore, in this study, we examined a method to readily add new classes of training images and evaluate feasibility by testing semantic segmentation on car-mounted camera images.","PeriodicalId":436332,"journal":{"name":"2019 Nicograph International (NicoInt)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding New Classes in Semantic Segmentation\",\"authors\":\"K. Ueki\",\"doi\":\"10.1109/NICOInt.2019.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To implement semantic segmentation and assign one of the classes to each pixel, a large amount of pixel labelled images are required. However, annotations in existing image datasets are limited both in terms of quantity and diversity owing to the heavy annotation cost. Therefore, in this study, we examined a method to readily add new classes of training images and evaluate feasibility by testing semantic segmentation on car-mounted camera images.\",\"PeriodicalId\":436332,\"journal\":{\"name\":\"2019 Nicograph International (NicoInt)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Nicograph International (NicoInt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICOInt.2019.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Nicograph International (NicoInt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICOInt.2019.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了实现语义分割并为每个像素分配一个类,需要大量的像素标记图像。然而,由于标注成本高,现有图像数据集的标注在数量和多样性上都受到限制。因此,在本研究中,我们研究了一种易于添加新训练图像类别的方法,并通过测试车载摄像头图像的语义分割来评估可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adding New Classes in Semantic Segmentation
To implement semantic segmentation and assign one of the classes to each pixel, a large amount of pixel labelled images are required. However, annotations in existing image datasets are limited both in terms of quantity and diversity owing to the heavy annotation cost. Therefore, in this study, we examined a method to readily add new classes of training images and evaluate feasibility by testing semantic segmentation on car-mounted camera images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信