芯片上多功率域系统的IJTAG网络综合

P. Habiby, N. Lylina, Chih-Hao Wang, H. Wunderlich, S. Huhn, R. Drechsler
{"title":"芯片上多功率域系统的IJTAG网络综合","authors":"P. Habiby, N. Lylina, Chih-Hao Wang, H. Wunderlich, S. Huhn, R. Drechsler","doi":"10.1109/ETS56758.2023.10174127","DOIUrl":null,"url":null,"abstract":"The high-volume manufacturing test ensures the production of defect-free devices, which is of utmost importance when dealing with safety-critical systems. Such a high-quality test requires a deliberately designed scan network to provide a time and cost-effective access to many on-chip components, as included in state-of-the-art chip designs. The IEEE 1687 Std. (IJTAG) has been introduced to tackle this challenge by adding programmable components that enables the design of reconfigurable scan networks. Although these networks reduce the test time by shortening the scan chains’ lengths, the reconfiguration process itself incurs an additional time overhead. This paper proposes a heuristic method for designing customized multi-power domain reconfigurable scan networks with a minimized overall reconfiguration time. More precisely, the proposed method exploits a-priori given non-functional properties of the system, such as the power characteristics and the instruments’ access requirements. For the first time, these non-functional properties are considered to synthesize a well-adjusted and highly efficient multi-power domain network. The experimental results show a considerable improvement over the reported benchmark networks.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of IJTAG Networks for Multi-Power Domain Systems on Chips\",\"authors\":\"P. Habiby, N. Lylina, Chih-Hao Wang, H. Wunderlich, S. Huhn, R. Drechsler\",\"doi\":\"10.1109/ETS56758.2023.10174127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high-volume manufacturing test ensures the production of defect-free devices, which is of utmost importance when dealing with safety-critical systems. Such a high-quality test requires a deliberately designed scan network to provide a time and cost-effective access to many on-chip components, as included in state-of-the-art chip designs. The IEEE 1687 Std. (IJTAG) has been introduced to tackle this challenge by adding programmable components that enables the design of reconfigurable scan networks. Although these networks reduce the test time by shortening the scan chains’ lengths, the reconfiguration process itself incurs an additional time overhead. This paper proposes a heuristic method for designing customized multi-power domain reconfigurable scan networks with a minimized overall reconfiguration time. More precisely, the proposed method exploits a-priori given non-functional properties of the system, such as the power characteristics and the instruments’ access requirements. For the first time, these non-functional properties are considered to synthesize a well-adjusted and highly efficient multi-power domain network. The experimental results show a considerable improvement over the reported benchmark networks.\",\"PeriodicalId\":211522,\"journal\":{\"name\":\"2023 IEEE European Test Symposium (ETS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS56758.2023.10174127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大批量生产测试可确保生产出无缺陷的设备,这在处理安全关键系统时至关重要。如此高质量的测试需要精心设计的扫描网络,以提供时间和成本效益的访问许多片上组件,包括在最先进的芯片设计中。IEEE 1687标准(IJTAG)通过添加可编程组件来实现可重构扫描网络的设计,从而解决了这一挑战。尽管这些网络通过缩短扫描链的长度来减少测试时间,但重新配置过程本身会产生额外的时间开销。本文提出了一种启发式方法,用于设计具有最小总体重构时间的自定义多功率域重构扫描网络。更准确地说,所提出的方法利用了先验给定的系统非功能特性,如功率特性和仪器的接入要求。这是第一次考虑这些非功能特性来合成一个调节良好、高效的多功率域网络。实验结果表明,与已有的基准网络相比,该方法有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of IJTAG Networks for Multi-Power Domain Systems on Chips
The high-volume manufacturing test ensures the production of defect-free devices, which is of utmost importance when dealing with safety-critical systems. Such a high-quality test requires a deliberately designed scan network to provide a time and cost-effective access to many on-chip components, as included in state-of-the-art chip designs. The IEEE 1687 Std. (IJTAG) has been introduced to tackle this challenge by adding programmable components that enables the design of reconfigurable scan networks. Although these networks reduce the test time by shortening the scan chains’ lengths, the reconfiguration process itself incurs an additional time overhead. This paper proposes a heuristic method for designing customized multi-power domain reconfigurable scan networks with a minimized overall reconfiguration time. More precisely, the proposed method exploits a-priori given non-functional properties of the system, such as the power characteristics and the instruments’ access requirements. For the first time, these non-functional properties are considered to synthesize a well-adjusted and highly efficient multi-power domain network. The experimental results show a considerable improvement over the reported benchmark networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信