M. de Souza, A. Cerdeira, M. Estrada, S. Barraud, M. Cassé, M. Vinet, O. Faynot, M. Pavanello
{"title":"高温下SOI纳米线和纳米片MOS晶体管栅极感应漏极分析","authors":"M. de Souza, A. Cerdeira, M. Estrada, S. Barraud, M. Cassé, M. Vinet, O. Faynot, M. Pavanello","doi":"10.1109/LAEDC54796.2022.9908212","DOIUrl":null,"url":null,"abstract":"This work presents a comparison between the Gate-Induced Drain Leakage (GIDL) current of the nanowire (tri-gate MOSFET with narrow fin width) and nanosheet (tri-gate MOSFET with wide fin width) SOI MOSFETs at high temperatures, in the range between 300 K and 580 K. The study is conducted using experimental data, corroborated with 3D TCAD simulations. It is demonstrated that the GIDL current normalized by the total fin width is larger in nanosheet MOSFET than for the nanowire at high temperatures. Additionally, the nanosheet device presents a larger variation of the normalized GIDL current with the temperature than the nanowire one.","PeriodicalId":276855,"journal":{"name":"2022 IEEE Latin American Electron Devices Conference (LAEDC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of the Gate-Induced Drain Leakage of SOI Nanowire and Nanosheet MOS Transistors at High Temperatures\",\"authors\":\"M. de Souza, A. Cerdeira, M. Estrada, S. Barraud, M. Cassé, M. Vinet, O. Faynot, M. Pavanello\",\"doi\":\"10.1109/LAEDC54796.2022.9908212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a comparison between the Gate-Induced Drain Leakage (GIDL) current of the nanowire (tri-gate MOSFET with narrow fin width) and nanosheet (tri-gate MOSFET with wide fin width) SOI MOSFETs at high temperatures, in the range between 300 K and 580 K. The study is conducted using experimental data, corroborated with 3D TCAD simulations. It is demonstrated that the GIDL current normalized by the total fin width is larger in nanosheet MOSFET than for the nanowire at high temperatures. Additionally, the nanosheet device presents a larger variation of the normalized GIDL current with the temperature than the nanowire one.\",\"PeriodicalId\":276855,\"journal\":{\"name\":\"2022 IEEE Latin American Electron Devices Conference (LAEDC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Latin American Electron Devices Conference (LAEDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAEDC54796.2022.9908212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin American Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC54796.2022.9908212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
本研究比较了纳米线(窄翅片宽度的三栅极MOSFET)和纳米片(宽翅片宽度的三栅极MOSFET) SOI MOSFET在300 K到580 K高温下的栅极感应漏极(GIDL)电流。该研究使用实验数据进行,并与3D TCAD模拟相证实。结果表明,在高温下,纳米片MOSFET的GIDL电流比纳米线的GIDL电流大。此外,与纳米线器件相比,纳米片器件的归一化GIDL电流随温度的变化更大。
Analysis of the Gate-Induced Drain Leakage of SOI Nanowire and Nanosheet MOS Transistors at High Temperatures
This work presents a comparison between the Gate-Induced Drain Leakage (GIDL) current of the nanowire (tri-gate MOSFET with narrow fin width) and nanosheet (tri-gate MOSFET with wide fin width) SOI MOSFETs at high temperatures, in the range between 300 K and 580 K. The study is conducted using experimental data, corroborated with 3D TCAD simulations. It is demonstrated that the GIDL current normalized by the total fin width is larger in nanosheet MOSFET than for the nanowire at high temperatures. Additionally, the nanosheet device presents a larger variation of the normalized GIDL current with the temperature than the nanowire one.