浅结活化动力学:物理机制

H. Kennel, M. Giles, M. Diebel, P. Keys, J. Hwang, S. Govindaraju, M. Liu, A. Budrevich
{"title":"浅结活化动力学:物理机制","authors":"H. Kennel, M. Giles, M. Diebel, P. Keys, J. Hwang, S. Govindaraju, M. Liu, A. Budrevich","doi":"10.1109/RTP.2006.367986","DOIUrl":null,"url":null,"abstract":"Forming highly active shallow junctions is a key component enabling low external resistance and high transistor performance. Millisecond flash or scanning laser anneals can be used to contain diffusion and optimize activation, either directly by leveraging temperatures exceeding 1200C, or in combination with non-equilibrium processes such as amorphization plus solid phase epitaxy or liquid phase epitaxy. Diffusionless profiles can be obtained, but may not be optimal for devices. Consideration of deactivation physics is crucial to incorporation of any process leveraging superactive doping, since relaxation of doping is frequently very rapid, and may be crucially influenced by implant damage effects. Developing an understanding of dominant mechanisms is essential for the exploitation of millisecond or faster anneals to form superactive doping","PeriodicalId":114586,"journal":{"name":"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Kinetics of Shallow Junction Activation: Physical Mechanisms\",\"authors\":\"H. Kennel, M. Giles, M. Diebel, P. Keys, J. Hwang, S. Govindaraju, M. Liu, A. Budrevich\",\"doi\":\"10.1109/RTP.2006.367986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forming highly active shallow junctions is a key component enabling low external resistance and high transistor performance. Millisecond flash or scanning laser anneals can be used to contain diffusion and optimize activation, either directly by leveraging temperatures exceeding 1200C, or in combination with non-equilibrium processes such as amorphization plus solid phase epitaxy or liquid phase epitaxy. Diffusionless profiles can be obtained, but may not be optimal for devices. Consideration of deactivation physics is crucial to incorporation of any process leveraging superactive doping, since relaxation of doping is frequently very rapid, and may be crucially influenced by implant damage effects. Developing an understanding of dominant mechanisms is essential for the exploitation of millisecond or faster anneals to form superactive doping\",\"PeriodicalId\":114586,\"journal\":{\"name\":\"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTP.2006.367986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2006.367986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

形成高活性的浅结是实现低外部电阻和高晶体管性能的关键组件。毫秒闪光或扫描激光退火可用于控制扩散和优化活化,要么直接利用超过1200℃的温度,要么结合非平衡过程,如非晶化加固相外延或液相外延。可以获得无扩散轮廓,但对于器件可能不是最佳的。考虑失活物理对于纳入任何利用超活性掺杂的过程都是至关重要的,因为掺杂的松弛通常非常迅速,并且可能受到植入物损伤效应的关键影响。发展对主要机制的理解对于利用毫秒或更快的退火形成超活性掺杂至关重要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinetics of Shallow Junction Activation: Physical Mechanisms
Forming highly active shallow junctions is a key component enabling low external resistance and high transistor performance. Millisecond flash or scanning laser anneals can be used to contain diffusion and optimize activation, either directly by leveraging temperatures exceeding 1200C, or in combination with non-equilibrium processes such as amorphization plus solid phase epitaxy or liquid phase epitaxy. Diffusionless profiles can be obtained, but may not be optimal for devices. Consideration of deactivation physics is crucial to incorporation of any process leveraging superactive doping, since relaxation of doping is frequently very rapid, and may be crucially influenced by implant damage effects. Developing an understanding of dominant mechanisms is essential for the exploitation of millisecond or faster anneals to form superactive doping
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信