{"title":"采用双稳机制和频率上转换的宽带旋转能量收集","authors":"Hailing Fu, E. Yeatman","doi":"10.1109/MEMSYS.2017.7863542","DOIUrl":null,"url":null,"abstract":"This paper presents the electromechanical dynamics of a broadband rotational piezoelectric energy harvester using bi-stability and frequency up-conversion. Bi-stability is achieved by the repulsive force between the tip magnet on a piezoelectric cantilever and a fixed magnet above the tip magnet. Frequency up-conversion is realized by the plucking force generated between the tip magnet and a rotating driving magnet below the tip magnet. A numerical model based on the distributed-parameter model was built in Matlab/Simulink. The power extraction capability of different modes of oscillation was analyzed theoretically. The keys to maintain harvester operation in high energy orbit (inter-well vibration) were investigated. The rotational piezoelectric energy harvester was implemented experimentally, showing a significant improvement in output power over a wide bandwidth compared to a harvester without bi-stability.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Broadband rotational energy harvesting using bistable mechanism and frequency up-conversion\",\"authors\":\"Hailing Fu, E. Yeatman\",\"doi\":\"10.1109/MEMSYS.2017.7863542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the electromechanical dynamics of a broadband rotational piezoelectric energy harvester using bi-stability and frequency up-conversion. Bi-stability is achieved by the repulsive force between the tip magnet on a piezoelectric cantilever and a fixed magnet above the tip magnet. Frequency up-conversion is realized by the plucking force generated between the tip magnet and a rotating driving magnet below the tip magnet. A numerical model based on the distributed-parameter model was built in Matlab/Simulink. The power extraction capability of different modes of oscillation was analyzed theoretically. The keys to maintain harvester operation in high energy orbit (inter-well vibration) were investigated. The rotational piezoelectric energy harvester was implemented experimentally, showing a significant improvement in output power over a wide bandwidth compared to a harvester without bi-stability.\",\"PeriodicalId\":257460,\"journal\":{\"name\":\"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2017.7863542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2017.7863542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Broadband rotational energy harvesting using bistable mechanism and frequency up-conversion
This paper presents the electromechanical dynamics of a broadband rotational piezoelectric energy harvester using bi-stability and frequency up-conversion. Bi-stability is achieved by the repulsive force between the tip magnet on a piezoelectric cantilever and a fixed magnet above the tip magnet. Frequency up-conversion is realized by the plucking force generated between the tip magnet and a rotating driving magnet below the tip magnet. A numerical model based on the distributed-parameter model was built in Matlab/Simulink. The power extraction capability of different modes of oscillation was analyzed theoretically. The keys to maintain harvester operation in high energy orbit (inter-well vibration) were investigated. The rotational piezoelectric energy harvester was implemented experimentally, showing a significant improvement in output power over a wide bandwidth compared to a harvester without bi-stability.