基于进化算法的软件路径测试自动测试数据生成

G. Latiu, O. Creţ, L. Văcariu
{"title":"基于进化算法的软件路径测试自动测试数据生成","authors":"G. Latiu, O. Creţ, L. Văcariu","doi":"10.1109/EIDWT.2012.25","DOIUrl":null,"url":null,"abstract":"Software testing is a very expensive and time consuming process. Test methods which generate test data based on the program's internal structure are intensively used. This paper presents a comparison between three important Evolutionary Algorithms used for automatic test data generation, a technique that forces the execution of a desired path of the program called target path. Two new approaches, based on Particle Swarm Optimization and Simulated Annealing algorithms, used in conjunction with the approximation level and branch distance metrics, are compared with Genetic Algorithms for generating test data. The results obtained based on the proposed approaches suggest that evolutionary testing strategies are very well suited to generate test data which cover a target path inside a software program.","PeriodicalId":222292,"journal":{"name":"2012 Third International Conference on Emerging Intelligent Data and Web Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Automatic Test Data Generation for Software Path Testing Using Evolutionary Algorithms\",\"authors\":\"G. Latiu, O. Creţ, L. Văcariu\",\"doi\":\"10.1109/EIDWT.2012.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software testing is a very expensive and time consuming process. Test methods which generate test data based on the program's internal structure are intensively used. This paper presents a comparison between three important Evolutionary Algorithms used for automatic test data generation, a technique that forces the execution of a desired path of the program called target path. Two new approaches, based on Particle Swarm Optimization and Simulated Annealing algorithms, used in conjunction with the approximation level and branch distance metrics, are compared with Genetic Algorithms for generating test data. The results obtained based on the proposed approaches suggest that evolutionary testing strategies are very well suited to generate test data which cover a target path inside a software program.\",\"PeriodicalId\":222292,\"journal\":{\"name\":\"2012 Third International Conference on Emerging Intelligent Data and Web Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Emerging Intelligent Data and Web Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIDWT.2012.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Intelligent Data and Web Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIDWT.2012.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

软件测试是一个非常昂贵和耗时的过程。大量使用基于程序内部结构生成测试数据的测试方法。本文介绍了用于自动测试数据生成的三种重要进化算法之间的比较,这是一种强制执行程序所需路径的技术,称为目标路径。基于粒子群优化和模拟退火算法,结合近似水平和分支距离度量,与遗传算法进行了比较。基于所提出的方法获得的结果表明,进化测试策略非常适合于生成覆盖软件程序内部目标路径的测试数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Test Data Generation for Software Path Testing Using Evolutionary Algorithms
Software testing is a very expensive and time consuming process. Test methods which generate test data based on the program's internal structure are intensively used. This paper presents a comparison between three important Evolutionary Algorithms used for automatic test data generation, a technique that forces the execution of a desired path of the program called target path. Two new approaches, based on Particle Swarm Optimization and Simulated Annealing algorithms, used in conjunction with the approximation level and branch distance metrics, are compared with Genetic Algorithms for generating test data. The results obtained based on the proposed approaches suggest that evolutionary testing strategies are very well suited to generate test data which cover a target path inside a software program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信